Cho (O) đường kính AB, vẽ hai dây AC// BD. Chứng minh AC=BD và 3 điểm C,O,D thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
a)Ta có: AC//BD(gt)
OH⊥AC(gt)
Do đó: OH⊥BD(Định lí 2 từ vuông góc tới song song)
Ta có: OH⊥BD(cmt)
OK⊥BD(gt)
mà OH và OK có điểm chung là O
nên H,O,K thẳng hàng(đpcm)
b) Vì đường tròn (O) có AB là đường kính(gt)
nên O là trung điểm của AB
hay OA=OB
Xét ΔAOH vuông tại H và ΔBOK vuông tại K có
OA=OB(cmt)
gocAOH=gocBOK(hai góc đối đỉnh)
Do đó: ΔAOH=ΔBOK(cạnh huyền-góc nhọn)
⇒AH=BK(hai cạnh tương ứng)
c) Ta có: ΔAOH=ΔBOK(cmt)
nên OH=OK(hai cạnh tương ứng)
Vì đường tròn (O) có CD là dây
nên OC=OD
Xét ΔCOH vuông tại H và ΔDOK vuông tại K có
OC=OD(cmt)
OH=OK(cmt)
Do đó: ΔCOH=ΔDOK(cạnh huyền-cạnh góc vuông)
⇒HC=KD(hai cạnh tương ứng)
Ta có: AC=AH+HC(H nằm giữa A và C)
BD=BK+DK(K nằm giữa B và D)
mà AH=BK(cmt)
và HC=DK(cmt)
nên AC=BD(đpcm)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
=>ΔABC vuông tại C
=>AC vuông góc CB
=>CB vuông góc BD
=>B nằm trên đường tròn đường kính CD
Xét tứ giác ACBD có
AB căt CD tại trung điểm của mỗi đường
AB=CD
=>ACBD là hình chữ nhật
=>AC=BD
b:
Th1: AC<BC
mà OM,ON lần lượt là khoảng cách từ O đến AC,BC
nên OM>ON
TH2:
AC>BC
mà OM,ON lần lượt là khoảng cách từ O đến AC,BC
nên OM<ON
TH3:
AC=BC
mà OM,ON lần lượt là khoảng cách từ O đến AC,BC
nên OM=ON
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng