K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

\(8x^2y^2+x^2+y^2-10xy=0\) 

\(8x^2y^2-8xy+x^2-2xy+y^2=0\) 

\(8x^2y^2-8xy+2+x^2-2xy+y^2=2\) 

\(2\left(2xy-1\right)^2+\left(x-y\right)^2=2\) (*)

nếu \(\left(2xy-1\right)^2=0\) thì \(\left(x-y\right)^2=2\) ( không có nghiệm thỏa mãn ) 

nếu \(\left(2xy-1\right)^2=1\) thì \(\left(x-y\right)^2=0\) 

Suy ra x - y = 0 

x = y 

\(\left(2xy-1\right)^2=1\)    

\(2xy-1=\pm1\) 

\(\orbr{\begin{cases}2xy-1=1\\2xy-1=-1\end{cases}}\) 

\(\orbr{\begin{cases}2xy=1+1\\2xy=-1+1\end{cases}}\) 

\(\orbr{\begin{cases}2xy=2\\2xy=0\end{cases}}\) 

\(\orbr{\begin{cases}xy=1\Rightarrow x=y=\pm1\\xy=0\Rightarrow x=0;y=0\end{cases}}\) 

Vậy có 3 tậm nghiệm thỏa đề bài là ( 0 ; 0 ) ( -1 : -1 ) ( 1 ; 1 ) 

21 tháng 8 2020

Đưa phương trình về dạng phương trình bậc hai ẩn x, ta có:

\(\left(8y^2+1\right)x^2-10xy+y^2=0\left(1\right)\)

Phương trình (1) có \(\Delta=96y^2-32y^4=y^2\left(96-32y^2\right)\)

Để (1) có nghiệm thì \(\Delta=y^2\left(96-32y^2\right)\ge0\)và để (1) có nghiệm nguyên thì \(\Delta\)phải là số chính phương

\(\Leftrightarrow96-32y^2=k^2\left(k\inℤ\right)\)

Tìm được \(y^2\le3\)Do y nguyên nên y={-1;0;1}

-Với y=0 tìm được x=0

-Với y=-1 tìm được x=-1

-Với y=1 tìm được x=1

Vậy (x;y)=(0;0);(-1;-1);(1;1)

25 tháng 3 2020

Bạn xem lại đề

23 tháng 8 2017

P=\(X^2+2Y^2-2XY+8X+8Y+2017\)

P=\(\dfrac{4X^2+8Y^2-8XY+32Y+32X+8068}{4}\)

P=\(\dfrac{(\sqrt{3}X)^2-2.\sqrt{3}X.\dfrac{4}{\sqrt{3}}Y+\left(\dfrac{4}{\sqrt{3}}Y\right)^2-\left(\dfrac{4}{\sqrt{3}}Y\right)^2+8Y^2+X^2+32X+32Y+8068}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+\dfrac{8}{3}Y^2+32X+32Y+8068}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+2.X.16+16^2+(\dfrac{2\sqrt{2}}{\sqrt{3}}Y)^2+2.\dfrac{2\sqrt{2}}{\sqrt{3}}Y.4\sqrt{6}+\left(4\sqrt{6}\right)^2+7716}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+\left(X+16\right)^2+\left(\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}\right)^2}{4}+1929\ge1929\forall X\in R\)

DẤU = XẢY RA \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y=0\\X+16=0\\\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}=0\end{matrix}\right.\)

29 tháng 6 2017

Phép chia các phân thức đại số

a: \(=\dfrac{2xy\left(2x^2y-4x+5\right)}{2xy}=2x^2y-4x+5\)

b: \(=\dfrac{x^2y\left(7x^2y-2y-5x^2y^3\right)}{3x^2y}=\dfrac{7}{3}x^2y-\dfrac{2}{3}y-\dfrac{5}{3}x^2y^3\)

21 tháng 6 2015

a) x2+6xy+9y2=(x+3y)^2

b)4x2-12xy+9y^2=(2x-3y)^2

c)x2-10xy+25y^2=(x-5y)^2

d)9x^2+24xy+16y^2=(3x+4y)^2

e)27x^3+54x2y+36xy2+8y3=(3x+2y)^3

f)x^3-6x^2y+12xy2-8y3=(x-2y)^3

g)8x3+12x^2y+6xy2+y3=(2x+y)^3

h)8x^3-12x2y+6xy2-y^3=(2x-y)^3