K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

chào as

28 tháng 4 2019

https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+c%C3%B3+ba+g%C3%B3c+nh%E1%BB%8Dn+trung+tuy%E1%BA%BFn+AM+tr%C3%AAn+n%E1%BB%A7a+m%E1%BA%B7t+ph%E1%BA%B3ng+ch%E1%BB%A9ng+%C4%91i%E1%BB%83m+C+c%C3%B3+b%E1%BB%9D+l%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AB+v%E1%BA%BD+%C4%91o%E1%BA%A1n+th%E1%BA%B3ng+AE++vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AB+v%C3%A0+AE=AB+tr%C3%AAn+n%E1%BB%A7a+m%E1%BA%B7t+ph%E1%BA%B3ng+b%E1%BB%9D+ch%E1%BB%A9a+%C4%91i%E1%BB%83m+B+c%C3%B3+b%E1%BB%9D+l%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AC+v%E1%BA%BD+%C4%91o%E1%BA%A1n+th%E1%BA%B3ng+AD+vunng+g%C3%B3c+v%E1%BB%9Bi+AC+v%C3%A0+AD+=Ac+a)+c/m+BD=CEb)+tr%C3%AAn+tia+%C4%91%E1%BB%91i+c%E1%BB%A7a+tia+MA+l%E1%BA%A5y+N+sao+cho+MN=MA.C/m+tam+gi%C3%A1c+ADE=tam+gi%C3%A1c+CANc)+g%E1%BB%8Di+I+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+DE+v%C3%A0+AM+c/m+(AD%5E2+IE%5E2)/DI%5E2+AE%5E2&id=412461

11 tháng 2 2020

Đặt đa thức \(f\left(x\right)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+...+a_k\)(trong đó \(n\ge2\)và \(a_k\)là hệ số tự do)

\(\Rightarrow f\left(5\right)=a_0.5^n+a_1.5^{n-1}+a_2.5^{n-2}+...+a_k\)

Dễ thấy 5 là số nguyên tố nên các lũy thừa bậc n; n - 1; n - 2;... của 5 không chia hết cho 7.

Vậy để \(f\left(5\right)⋮7\)thì tất cả các hệ số chia hết cho 7 hay \(a_0;a_1;a_2;...;a_k⋮7\)(1)

Tương tự với \(f\left(7\right)⋮5\)ta có \(a_0;a_1;a_2;...;a_k⋮5\)(2)

Vì (5,7) = 1 nên từ (1) và (2) suy ra \(a_0;a_1;a_2;...;a_k⋮35\)

Lúc đó f(x) chia hết cho 35 với mọi x 

Vậy f(12) chia hết cho 35 (đpcm)

11 tháng 2 2020

Đặt: \(f\left(x\right)=a.x^n+b.x^{n-1}+...+m\left(n>1;m\in R\right)\)

Ta có: \(f\left(5\right)=a.5^n+b.5^{n-1}+...+m⋮7\)

Mà: \(5^k\) không chia hết cho \(7\left(k\in N\right)\)

\(\Rightarrow\) Đề \(f\left(5\right)⋮7\) thì \(a,b,c,....,m⋮7\)

Ta có: \(f\left(7\right)=a.7^n+b.7^{n-1}+...+m⋮5\)

Mà: \(7^k\) không chia hết cho \(5\left(k\in N\right)\)

\(\Rightarrow\)Đề \(f\left(7\right)⋮5\) thì \(a,b,c,...,m⋮5\)

Mà: \(\left(5;7\right)=1\Rightarrow a,b,c,...,m⋮5.7=35\)

\(\Rightarrow f\left(x\right)⋮35\)

\(\Rightarrow f\left(12\right)⋮35\)

Vậy ..........

(???)

11 tháng 2 2020

lần đầu mk cx định giải như thế nhưng nghĩ lại thjaay sai

ví dụ \(25a+5b+c⋮7\)không nhất thiết a,b,c chia hết cho 7

ví dụ a = 3,b=2,c=55 vẫn chia hết cho 7

12 tháng 8 2015

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

31 tháng 3 2016

Ta có:

\(f\left(1\right)=a+b+c\text{⋮7 }\)

\(f\left(2\right)=4a+2b+c⋮7\)

\(\Rightarrow f\left(2\right)-f\left(1\right)=3a+b⋮7\)

\(f\left(3\right)=9a+3b+c=3\left(3a+b\right)+c⋮7\)

Mà \(3a+b⋮7\)

\(\Rightarrow c⋮7\)

Mà \(a+b+c⋮7\)

\(\Rightarrow a+b⋮7\)

Mà \(4a+2b+c⋮7\)

\(\Rightarrow4a+2b=2\left(2a+b\right)⋮7\)

\(2\text{̸ ⋮̸7}\)

\(\Rightarrow2a+b⋮7\)

Mà \(a+b⋮7\)

\(\Rightarrow\left(2a+b\right)-\left(a+b\right)=a⋮7\)

Có \(a⋮7;c⋮7;a+b+c⋮7\)

\(\Rightarrow b⋮7\)

\(f\left(m\right)=am^2+bm+c\)

Như vậy \(\Rightarrow am^2⋮7;bm⋮7;c⋮7\)

\(\Rightarrow a.x^2+bx+c⋮7\)

Do đó với bất kỳ giá trị nào của m nguyên thì f(m)⋮7

14 tháng 8 2020

Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)

Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)

Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)

\(\Leftrightarrow2a+b+4c+d⋮7\)

\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)

\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)

Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.

17 tháng 2 2020

  a)    Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)

   +)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)

   +)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)

Từ (1),(2)

    \(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm

17 tháng 2 2020

b)Ta có:\(f\left(x\right)=ax^2+bx+c\)

+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)

+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)

+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)

Từ (2);(3) cộng vế với vế ta được:

                  \(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)

                                                           \(=2a+2c\)

                                                           \(=2.\left(a+c\right):2007\)

    mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)

Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)

Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)

Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)