Cho pt x2+mx-2m-3=0 (1) với m là tham số
a, giải pt với m=-2
b,giả sử x1 và x2 là hai no của pt(1).tìm hệ thức giữa x1 và x2 không phụ thuộc vào m
HELP ME!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Δ=(2m+2)^2-4(-m-4)
=4m^2+8m+4+4m+16
=4m^2+12m+20
=4m^2+12m+9+11=(2m+3)^2+11>0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
M=x1(1-x1)+x2(1-x2)
=x1+x2-x1^2-x2^2
=(x1+x2)-(x1^2+x2^2)
=(x1+x2)-(x1+x2)^2+2x1x2
=(-2m-2)-(-2m-2)^2+2(-m-4)
=-2m-2-2m-8-(4m^2-8m+4)
=-4m-10-4m^2+8m-4=-4m^2+4m-14
Xét \(\Delta'=\left(m+1\right)^2-\left(-m-4\right)=m^2+3m+5=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall m\)
Suy ra pt có hai nghiệm pb với mọi m
Theo hệ thức viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1x_2=-m-4\end{matrix}\right.\)
\(M=x_1-x_1^2+x_2-x_2^2=x_1+x_2-\left(x_1+x_2\right)^2+2x_1x_2\)
\(=-2m-2-\left(-2m-2\right)^2+2\left(-m-4\right)\)
Qua đó thấy M phụ thuộc vào m
Giả sử pt đã cho có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow M=x_1+x_2-x_1x_2\)
\(\Rightarrow M=2m+2-2m\)
\(\Rightarrow M=2\) ko phụ thuộc m (đpcm)
a, Khi m = 0 thì :
pt <=> x^2+2x-3 = 0
<=> (x-1).(x+3) = 0
<=> x-1=0 hoặc x+3=0
<=> x=1 hoặc x=-3
Tk mk nha
Ta có: \(x^2-2\left(m+1\right)x+m-4=0\)
Phương trình có hai nghiệm phân biệt khi △'>0\(\Leftrightarrow\left(m+1\right)^2-m+4>0\Leftrightarrow m^2+m+5>0\)(luôn đúng)
Theo Vi-ét \(x_1+x_2=2\left(m+1\right);x_1x_2=m-4\)
\(A=x_1+x_2-2x_1x_2+2021=2\left(m+1\right)-2\left(m-4\right)+2021=2031\) không phụ thuộc vào m
\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)
Để phương trình có hai nghiệm phân biệt thì 2m-3<>0
hay m<>3/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)
Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)
\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)
\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)
\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)
\(\Leftrightarrow48m^2-250+85=0\)
Đến đây bạn chỉ cần giải pt bậc hai là xong rồi
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)
\(=\left(2m-3\right)^2+1>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)
Ta có \(3x_1-4x_2=11\left(3\right)\)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)
\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)
Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)
\(\Leftrightarrow m=4,125\)
a) Thay m=-4 vào phương trình, ta được:
\(x^2-2\cdot\left(-5\right)\cdot x+\left(-4\right)+4=0\)
\(\Leftrightarrow x^2+10x=0\)
\(\Leftrightarrow x\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-10\end{matrix}\right.\)
Vậy: Khi m=-4 thì phương trình có hai nghiệm phân biệt là {0;-10}
a) Thay m=-2 vào pt (1)
=> \(x^2-2x+1\)=0
<=> x=1
b) x1,x2 là 2 nghiệm của pt
=> \(\Delta\ge0\)
<=> \(m^2-4\left(-2m-3\right)\ge0\)
<=> \(\left[{}\begin{matrix}m\le-6\\m\ge-2\end{matrix}\right.\)
Áp dụng hệ thức Vi-ét ta có:
\(x_1+x_2=-m\)(1)
\(x_1.x_2=-2m-3\)(2)
Từ (1) => \(m=-x_1-x_2\) Thay vào (2) ta có:
\(x_1.x_2=-2\left(-x_1-x_2\right)-3\)
<=> \(2x_1+2x_2-x_1.x_2-3=0\)
Vậy hệ thức trên k phụ thuộc vào m