Tìm xx biết: x(x−6)+x(−5−x)=−22x\left(x-6\right)+x\left(-5-x\right)=-22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
\(\left(x-5\right)^6=\left(x-5\right)^8\)
\(\Leftrightarrow\left(x-5\right)^6\left[1-\left(x-5\right)^2\right]=0\)
\(\Leftrightarrow\left(x-5\right)^6\left(x-4\right)\left(6-x\right)=0\Leftrightarrow x=4;x=5;x=6\)
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
a)\(10\left(x-7\right)-8\left(x+5\right)=6\cdot\left(-5\right)+24\)
\(10x-10\cdot7-8x-8\cdot5=\left(-30\right)+24\)
\(10x-70-8x-40=-6\)
\(10x-8x=\left(-6\right)+70+40\)
\(2x=104\)
\(x=104\div2\)
\(x=52\)
b)\(2\left(4x-8\right)-7\left(3+x\right)=6\)
\(2\cdot4x-2\cdot8-7\cdot3-7x=6\)
\(8x-16-21-7x=6\)
\(8x-7x=6+16+21\)
\(x=43\)
Ta có: \(\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
\(\Leftrightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=10-5+2\sqrt{6}=5+2\sqrt{6}\)
\(\Leftrightarrow\left(5+2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2\)
hay x=2
\(\left|x+5\right|=5\)
<=> \(\hept{\begin{cases}x+5=5\\x+5=-5\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x=-10\end{cases}}\)
\(\left|x+1\right|+7=10\)
<=> \(\left|x+1\right|=3\)
<=> \(\hept{\begin{cases}x+1=3\\x+1=-3\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\x=-4\end{cases}}\)
\(\left|x-3\right|-6=5\)
<=> \(\left|x-3\right|=11\)
<=> \(\hept{\begin{cases}x-3=11\\x-3=-11\end{cases}}\)
<=> \(\hept{\begin{cases}x=14\\x=-8\end{cases}}\)
\(\left|x+2\right|-6\left(x-4\right)=20-6x\)
<=> \(\left|x+2\right|-6x+24=20-6x\)
<=> \(\left|x+2\right|=-4\)
<=> \(\hept{\begin{cases}x+2=-4\\x+2=4\end{cases}}\)
<=> \(\hept{\begin{cases}x=-2\\x=2\end{cases}}\)
a) \(|x+5|=5\)
\(\Rightarrow\orbr{\begin{cases}x+5=5\\x+5=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-10\end{cases}}\)
Vậy x = 0 hoặc x = -10
b) \(|x+1|+7=10\)
\(\Rightarrow|x+1|=10-7\)
\(\Rightarrow|x+1|=3\)
\(\Rightarrow\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
Vậy x = 2 hoặc x = -4
c) \(|x-3|-6=5\)
\(\Rightarrow|x-3|=5+6\)
\(\Rightarrow|x-3|=11\)
\(\Rightarrow\orbr{\begin{cases}x-3=11\\x-3=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=14\\x=-8\end{cases}}\)
Vậy x = 14 hoặc x = -8
d) \(|x+2|-6\left(x-4\right)=20-6x\)
\(\Rightarrow|x+2|-6x+24=20-6x\)
\(\Rightarrow|x+2|=20-6x-24+6x\)
\(\Rightarrow|x+2|=\left(20-24\right)+\left(-6x+6x\right)\)
\(\Rightarrow|x+2|=-4\)
Vì \(|x|\ge0\)mà \(|x+2|=-4\)
\(\Rightarrow\)Không có giá trị x thỏa mãn
_Chúc bạn học tốt_