K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 5 2018

Lời giải:

a)

Xét tam giác $CFB$ và $ADB$ có:

\( \left\{\begin{matrix} \widehat{CFB}=\widehat{ADB}=90^0\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle CFB\sim \triangle ADB(g.g) \)

b)

Xét tam giác $AFH$ và $ADB$ có:

\( \left\{\begin{matrix} \widehat{AFH}=\widehat{ADB}=90^0\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle AFH\sim \triangle ADB(g.g)\)

\(\Rightarrow \frac{AF}{AD}=\frac{AH}{AB}\Rightarrow AF.AB=AD.AH\)

c)

Xét tam giác $ABD$ và $CBF$ có:

\( \left\{\begin{matrix} \widehat{ADB}=\widehat{CFB}\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle ABD\sim \triangle CBF(g.g)\)

\(\Rightarrow \frac{AB}{CB}=\frac{BD}{BF}\)

Xét tam giác $BDF$ và $BAC$ có:

\( \left\{\begin{matrix} \text{chung góc B}\\ \frac{BD}{BF}=\frac{BA}{BC}(cmt)\end{matrix}\right.\Rightarrow \triangle BDF\sim \triangle BAC(c.g.c)\)

d) Đề sai hiển nhiên.

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

3 tháng 9 2021

da

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

a: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có

góc FBC chung

Do đó: ΔBFC\(\sim\)ΔBDA

b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

Do đó: ΔAFH\(\sim\)ΔADB

Suy ra: AF/AD=AH/AB

hay \(AF\cdot AB=AH\cdot AD\)

c: Ta có: ΔBDA\(\sim\)ΔBFC

nên BD/BF=BA/BC

=>BD/BA=BF/BC

Xét ΔBDF và ΔBAC có

BD/BA=BF/BC

góc DBF chung

Do đó: ΔBDF\(\sim\)ΔBAC

29 tháng 1 2022

1) Xét tứ giác AEBD:

\(\widehat{AEB}=\widehat{ADB}=90^o\left(BE\perp AE;AD\perp BD\right).\)

\(\Rightarrow\) Tứ giác AEBD nội tiếp đường tròn (dhnb).

\(\Rightarrow\) A; E; B; D cùng thuộc một đường tròn (O).

2) Tứ giác AEBD nội tiếp đường tròn (cmt).

\(\Rightarrow\) \(\widehat{ADE}=\widehat{ABE}.\)

hay \(\widehat{HDE}=\widehat{HBA}.\)

Xét ∆ HDE và ∆ HBA:

\(\widehat{HDE}=\widehat{HBA}\left(cmt\right).\)

\(\widehat{EHD}=\widehat{AHB}\) (Đối đỉnh).

\(\Rightarrow\Delta HDE\sim\Delta HBA\left(g-g\right).\)

3) Tứ giác AEBD nội tiếp đường tròn (cmt).

\(\Rightarrow\widehat{KDB}=\widehat{KAE}.\)

Xét ∆ KDB và ∆ KAE:

\(\widehat{KDB}=\widehat{KAE}\left(cmt\right).\)

\(\widehat{DKB}chung.\)

\(\Rightarrow\Delta KDB\sim\Delta KAE\left(g-g\right).\)

\(\Rightarrow\dfrac{KD}{KA}=\dfrac{KB}{KE}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow KD.KE=KB=KA\left(đpcm\right).\)

1: Xét tứ giác AEDB có 

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó: AEDB là tứ giác nội tiếp

2: Xét ΔHDE và ΔHBA có 

\(\widehat{HDE}=\widehat{HBA}\)

\(\widehat{DHE}=\widehat{BHA}\)

Do đó: ΔHDE∼ΔHBA

3: Xét ΔKDB và ΔKAE có 

\(\widehat{K}\) chung

\(\widehat{KDB}=\widehat{KAE}\)

Do đó: ΔKDB∼ΔKAE

Suy ra: KD/KA=KB/KE

hay \(KD\cdot KE=KA\cdot KB\)