cho tam giác DEF cân tại E có ED=EF=17 cm, DF=16cm. Kẻ đường trung tuyến EH
a/ chứng minh rằng tam giác EDH= tam giác EFH và chỉ ra EH vuông góc với DF
b/ tính độ dài EH
c/hãy so sánh các góc của tam giác EHF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ED<EF
=>HD<HF
b: Xét ΔDEI có DE=DI và góc D=60 độ
nên ΔDEI đều
c: Xét tứ giác FEBD có
A là trung điểm chung của FB và ED
=>FEBD là hbh
=>FE//BD
=>BD vuông góc DE
a, Xét Δ DEF vuông tại D, có :
\(EF^2=ED^2+DF^2\) (định lí Py - ta - go)
=> \(EF=13\left(cm\right)\)
b, Xét Δ EDH và Δ ENH, có :
\(\widehat{EDH}=\widehat{ENH}=90^o\)
EH là cạnh chung
\(\widehat{DEH}=\widehat{NEH}\) (EH là tia phân giác \(\widehat{EDN}\))
=> Δ EDH = Δ ENH (g.c.g)
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
a: Xét ΔEHD và ΔEHF có
EH chung
\(\widehat{HED}=\widehat{HEF}\)
ED=EF
Do đó: ΔEHD=ΔEHF
c: Ta có; ΔEHD=ΔEHF
=>HF=HD
mà H nằm giữa D và F
nên H là trung điểm của DF
=>\(HD=\dfrac{DF}{2}=3\left(cm\right)\)
ΔEHD vuông tại H
=>\(EH^2+HD^2=ED^2\)
=>\(EH^2=5^2-3^2=16\)
=>\(EH=\sqrt{16}=4\left(cm\right)\)
a: \(\widehat{E}=35^0\)
Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
\(\widehat{DEH}=\widehat{KEH}\)
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
hay ΔHDK cân tại H
a: ˆE=350E^=350
Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
ˆDEH=ˆKEHDEH^=KEH^
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
a: Xét ΔEDH và ΔEFH có
ED=EF
EH chung
HD=HF
Do đó: ΔEDH=ΔEFH
Ta có ΔEDF cân tại E
mà EH là đường trung tuyến
nên EH là đường cao
b: DH=HF=DF/2=8cm
=>EH=15cm
c: Xét ΔEHF có EF>EH>HF
nên góc EHF>góc EFH>góc HEF