K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=7.5\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=3.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{4.5^2}{7,5}=2.7\left(cm\right)\)

\(S_{ABH}=\dfrac{3.6\cdot2.7}{2}=1.8\cdot2.7=4.86\left(cm^2\right)\)

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)

Do đó: BD=15/7(cm); CD=20/7(cm)

26 tháng 3 2022

Giúp mình với

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

b: BC=căn 6^2+8^2=10cm 

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

c: AM=BC/2=5cm

=>HM=1,4cm 

S HAM=1/2*1,4*4,8=3,36cm2

14 tháng 4 2021

A B C 6 8 H E D

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

c, tam giác ABC vuông tại A, có đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )

\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm 

d, phải là cắt AC nhé, xem lại đề nhé bạn 

 

a: CB=10cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA^2=BH*BC

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>BA/BH=BD/BI

=>BA/BD=BH/BI

=>BA/BH=BD/BI=BC/BA

=>ΔBDC đồng dạng với ΔBIA

3 tháng 5 2023

a)Có tg ABC vuông tại a

áp dụng đl pytago ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=100\\ \Rightarrow BC=10\left(cm\right)\)

Có BD là đg phân giác tg ABC 

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\left(1\right)\)

lai co: AD+DC=AC=8

=>AD=8-DC

thay vao 1

\(\Rightarrow\dfrac{8-DC}{DC}=\dfrac{3}{5}\)

\(\Leftrightarrow DC=5\\ \Rightarrow AD=3\)

b) xét tg ABC và tg HBA có:

+góc BAH = AHB(=90 độ)

+góc B chung

=> tg ABC đồng dạng tg HBA (gg) (đpcm)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{BA}\\ \Leftrightarrow AB^2=HB.BC\left(dpcm\right)\)

c) có: + góc C =\(90^o-\widehat{B}\)  (goc A = 90 do)

\(\widehat{BAH}=90^o-\widehat{B}\)  (goc AHB =90do)

=> goc BAH = goc C

xet tg ABI va tg CBD co

+goc BAH =goc C

+ goc ABI = goc DBC (BD la phan giac)

=> tg ABI va tg CBD dong dang (g.g) (dpcm)

 

 

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC

=>HA^2=HB*HC

a: XétΔABC vuông tại A và ΔHBA vuông tại H có 

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(\dfrac{S_{ABC}}{S_{HBA}}=\dfrac{25}{9}\)

nên \(S_{HBA}=24:\dfrac{25}{9}=24\cdot\dfrac{9}{25}=8.64\left(cm^2\right)\)

9 tháng 4 2022

cảm ơn nha