Cho đường tròn tâm O và điểm S nằm bên ngoài đường tròn (O). từ S kẻ 2 tiếp tuyến SA,SB với đường tòn (O),(A,B là các tiếp điểm). gọi D là giao điểm của AO và SB, E là giao điểm của SO và AB. Vẽ AD cắt đường tròn (O) tại điểm thứ 2 là C.kẻ BH vuông góc AC
a/ chứng minh tứ giác SAOB là tứ giác nội tiếp
b/ chứng minh BC // SO và BC là phân giác của góc HBD
c/ gọi F là giao điểm của SC và BH. Chứng minh F là trung điểm của đoạn BH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác OASB có
\(\widehat{OAS}+\widehat{OBS}=180^0\)
Do đó: OASB là tứ giác nội tiếp
a: góc AMB=góc AEB=1/2*sđ cung AB=90 độ
Xét ΔBMS vuông tại M và ΔBED vuông tại E có
góc MBS=góc EBD
=>ΔBMS đồng dạng với ΔBED
=>góc BSM=góc BDE
=>góc MSE=góc MDE
=>MSDE nội tiếp
b: Xét ΔSME và ΔSBA có
góc S chung
góc SEM=góc SAB
=>ΔSME đồng dạng với ΔSBA
Để chứng minh tứ giác $EFOH$ là tứ giác nội tiếp, ta cần chứng minh $\angle EHF = \angle EOF$.
Ta có $\angle EHA = \angle HAB$ (do $SA$ và $SB$ là hai tiếp tuyến của đường tròn $O$), suy ra $\angle AHB = 90^\circ$.
Do đó, $\angle EHF = \angle EHA + \angle AHF = \angle HAB + \angle AOF = \angle EOF$ (do $OA$ và $OB$ là đường kính của đường tròn $O$).
Vậy, tứ giác $EFOH$ là tứ giác nội tiếp.
Để chứng minh $AM \cdot AB = AF \cdot AE$, ta sử dụng định lí Euclid về tích của các đoạn thẳng từ một điểm đến đường thẳng cắt nó.
Áp dụng định lí này cho đường thẳng $AH$ và đường tròn $O$, ta có:
$AM \cdot AB = AH^2 - OH^2$
$AF \cdot AE = AH^2 - HE \cdot HF$
Vì tứ giác $EFOH$ là tứ giác nội tiếp, nên $HE \cdot HF = OE \cdot OF$.
Do đó, $AM \cdot AB = AH^2 - OH^2 = AH^2 - OE \cdot OF = AF \cdot AE$.
Vậy, ta đã chứng minh được $AM \cdot AB = AF \cdot AE$.
a: Xét tứ giác SAOB có góc SAO+góc SBO=180 độ
nên SAOB là tứ giác nội tiếp
b: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
=>AB vuông góc với BC(1)
Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
DO đó: SA=SB
mà OA=OB
nên OS là đường trung trực của AB
=>OS vuông góc với AB(2)
Từ (1) và (2) suy ra SO//CB