K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

\(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)

\(\Leftrightarrow\left(4x-1\right)\left(-x+4\right)>0\) ( vì x2 + 12 > 0 với mọi x )

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x-1>0\\-x+4>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x-1< 0\\-x+4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{1}{4}\\x>4\end{matrix}\right.\end{matrix}\right.\)

TH1 : t/m

TH2 : loại

Vậy bpt có nghiệm \(\dfrac{1}{4}< x< 4\)

6 tháng 4 2017

Để \(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\Leftrightarrow\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4x>1\\-x>-4\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}\Rightarrow}\frac{1}{4}< x< 4}\)

Vậy \(\frac{1}{4}< x< 4\)

4 tháng 5 2018

Nhân vế theo vế rồi giải như phương trình, khác mỗi dấu bđt

5 tháng 6 2017

Vì x2 + 12 > 0 với mọi x

=> (4x-1)(x2+12)(-x+4) > 0

Khi ( (4x-1)(-x+4) > 0

TH1 : \(\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)

  <=> \(\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}}\)

=> 1/4 < x < 4

TH2  \(\hept{\begin{cases}4x-1< 0\\-x+4< 0\end{cases}}\)

<=>  \(\hept{\begin{cases}x< \frac{1}{4}\\x>4\end{cases}}\)

Vì không tồn tai x lớn hơn 4 và nhỏ hơn 1/4

=> TH2  không tồn tại x

=> (4x-1)(x2+12)(-x+4) > 0

 khi 1/4 < x < 4

5 tháng 6 2017

Vì x^2 + 12 > 0 với mọi x

Ta có bất phương trình tương đương: (4x-1)(-x+4) > 0

=> 4x-1 và -x+4 phải cùng dấu.

Trường hợp 1: 4x-1 > 0 và -x + 4 > 0 <=> x>1/4 và x<4 <=> 1/4 < x < 4.

Trường hợp 2: 4x-1 < 0 và -x + 4 < 0 <=> x<1/4 và x>4 (vô lý)

Vậy S={x | 1/4 < x < 4}

24 tháng 4 2019

\(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)

\(\Leftrightarrow\hept{\begin{cases}4x-1>0\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\\x^2+12>0\Leftrightarrow x^2>-12\Leftrightarrow x>12\\-x+4>0\Leftrightarrow-x>-4\Leftrightarrow x< 4\end{cases}}\)

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }