K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

\(\dfrac{x+10}{2003}+\dfrac{x+6}{2007}+\dfrac{x+12}{2001}+3=0\)

\(\Leftrightarrow\dfrac{x+10}{2003}+1+\dfrac{x+6}{2007}+1+\dfrac{x+12}{2001}+1=0\)

\(\Leftrightarrow\dfrac{x+10+2003}{2003}+\dfrac{x+6+2007}{2007}+\dfrac{x+12+2001}{2001}=0\)

\(\Leftrightarrow\dfrac{x+2013}{2003}+\dfrac{x+2013}{2007}+\dfrac{x+2013}{2001}=0\)

\(\Leftrightarrow\left(x+2003\right)\left(\dfrac{1}{2003}+\dfrac{1}{2007}+\dfrac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2013=0\)

\(\Leftrightarrow x=-2013\)

Vậy pt có nghiệm x = -2013

24 tháng 4 2018

\(\dfrac{x+10}{2003}\)+\(\dfrac{x+6}{2007}\)+\(\dfrac{x+12}{2001}\)+3=0

<=> \(\dfrac{x+10}{2003}\)+1+\(\dfrac{x+6}{2007}\)+1+\(\dfrac{x+12}{2001}\)+1=0

<=> (\(\dfrac{x+10}{2003}\)+1) + (\(\dfrac{x+6}{2007}\)+1) + (\(\dfrac{x+12}{2001}\)+1)=0

<=> \(\dfrac{x+2013}{2003}\)+\(\dfrac{x+2013}{2007}\)+\(\dfrac{x+2013}{2001}\)=0

<=> (x+2013)(\(\dfrac{1}{2003}+\dfrac{1}{2007}+\dfrac{1}{2001}\))=0

<=> x+2013=0( Vì \(\dfrac{1}{2003}+\dfrac{1}{2007}+\dfrac{1}{2001}\)>0)

<=> x= -2013

Vậy S={-2013}

24 tháng 4 2018

\(\dfrac{x+10}{2003}+\dfrac{x+6}{2007}+\dfrac{x+12}{2001}+3=0\)

<=>\(\dfrac{x+10}{2003}+1+\dfrac{x+6}{2007}+1+\dfrac{x+12}{2001}+1=0\)

<=>\(\dfrac{x+2013}{2003}+\dfrac{x+2013}{2007}+\dfrac{x+2013}{2001}=0\)

<=>\(\left(x+13\right)\left(\dfrac{1}{2003}+\dfrac{1}{2007}+\dfrac{1}{2001}\right)=0\)

vì 1/2003+1/2007+1/2001 khác 0

=>x+13=0<=>x=-13

vậy.............

a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)

\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow x+8-12+20x=0\)

\(\Leftrightarrow21x-4=0\)

\(\Leftrightarrow21x=4\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!

1: \(\Leftrightarrow\left(\dfrac{x+1}{85}+1\right)+\left(\dfrac{x+3}{83}+1\right)=\left(\dfrac{x+5}{81}+1\right)+\left(\dfrac{x+7}{79}+1\right)\)

=>x+86=0

=>x=-86

2: \(\Leftrightarrow\left(\dfrac{x-1}{2015}+1\right)-\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+7}{2007}+1\right)-\left(\dfrac{x+11}{2003}+1\right)\)

=>x+2014=0

=>x=-2014

3: \(\Leftrightarrow3\left(x+4\right)-2\left(x-3\right)=4x\)

=>4x=3x+12-2x+6

=>4x=x+18

=>3x=18

=>x=6

4: \(\Leftrightarrow15x-5\left(x+1\right)=3\left(2x+1\right)\)

=>15x-5x-5=6x+3

=>10x-5=6x+3

=>4x=8

=>x=2

5: \(\Leftrightarrow2\left(2x-7\right)+5\left(x+11\right)=-40\)

=>4x-14+5x+55=-40

=>9x+41=-40

=>x=-9

2 tháng 2 2023

em c.ơn nhiều lắm ạ

30 tháng 3 2017

\(\dfrac{x-4}{2001}\)- 1 +\(\dfrac{x-3}{2002}\)-1 + \(\dfrac{x-2}{2003}\)-1 =\(\dfrac{x-2003}{2}\)-1 + \(\dfrac{x-2002}{3}\)-1 +\(\dfrac{x-2001}{4}\)-1 <=> \(\dfrac{x-2005}{2001}\)+\(\dfrac{x-2005}{2002}\)+\(\dfrac{x-2005}{2003}\)-\(\dfrac{x-2005}{2}\)-\(\dfrac{x-2005}{3}\)-\(\dfrac{x-2005}{4}\)= 0 <=> (x-2005). (\(\dfrac{1}{2001}\)+\(\dfrac{1}{2002}\)+\(\dfrac{1}{2003}\)-\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)) =0 <=> x-2005=0 ( vì \(\dfrac{1}{2001}\) +\(\dfrac{1}{2002}\) +\(\dfrac{1}{2003}\)- \(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\) khác 0) =>x = 2005

30 tháng 3 2017

x-4/2001+ x-3/2002 + x-2/2003= x-2003/2 + x-2002/3 + x-2001/4

<=>(x-4/2001 -1)+(x-3/2002 -1)+(x-2/2003 -1)-(x-2003/2 -1)+

(x-2002/3 -1)+(x-2001/4 -1) =0

<=>x-2005/2001+ x-2005/2002+ x-2005/2003- x-2005/2-

x-2005/3- x-2005/4 =0

<=>(x-2005).(1/2001+1/2002+1/2003- 1/2- 1/3- 1/4)=0

<=>x-2005=0 (vì 1/2001+1/2002+1/2003-1/2-1/3-1/4)

<=>x=2005

Vậy pt có nghiệm là x=2005

22 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x+2x=24+1\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)

\(\Leftrightarrow17\left(x-1\right)=12\)

\(\Leftrightarrow17x-17=12\)

\(17x=12+17\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)

c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)

\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\)

\(\Leftrightarrow-x=-2003\)

\(\Leftrightarrow x=2003\)

Vậy phương trình có một nghiệm là x = 2003

29 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow4x+2x+2x=1+24\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy S={\(\dfrac{25}{8}\)}

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=6+3+12+8\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy S={\(\dfrac{29}{17}\)}

=>\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)

=>\(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2001}{4006}\)

=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)

=>\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)

=>1/(x+1)=1/2-2001/4006=1/2003

=>x+1=2003

=>x=2002

18 tháng 4 2017

\(\dfrac{x+30}{2007}+\dfrac{x+32}{2005}=\dfrac{x+34}{2003}+\dfrac{x+36}{2001}\)

\(\Leftrightarrow\dfrac{x+30}{2007}+1+\dfrac{x+32}{2005}+1=\dfrac{x+34}{2003}+1+\dfrac{x+36}{2001}+1\)

\(\Leftrightarrow\dfrac{x+2037}{2007}+\dfrac{x+2037}{2005}=\dfrac{x+2037}{2003}+\dfrac{x+2037}{2001}\)

\(\Leftrightarrow\dfrac{x+2037}{2007}+\dfrac{x+2037}{2005}-\dfrac{x+2037}{2003}-\dfrac{x+2037}{2001}=0\)

\(\Leftrightarrow\left(x+2037\right)\left(\dfrac{1}{2007}+\dfrac{1}{2005}-\dfrac{1}{2003}-\dfrac{1}{2001}\right)=0\)

\(\Rightarrow x+2037=0\).Do \(\dfrac{1}{2007}+\dfrac{1}{2005}-\dfrac{1}{2003}-\dfrac{1}{2001}\ne0\)

\(\Rightarrow x=-2037\)

19 tháng 4 2017

Các bạn xem mình làm thế này có đúng không nhé. Nếu sai thì xin các bạn chữa hộ mình

Bài làm

\(\dfrac{x+30}{2007}+\dfrac{x+32}{2005}=\dfrac{x+34}{2003}+\dfrac{x+36}{2001}\)

\(\dfrac{x+30}{2007}+\dfrac{x+32}{2005}-\dfrac{x+34}{2003}-\dfrac{x+36}{2001}=0\)

\(\left(\dfrac{x+30}{2007}+1\right)+\left(\dfrac{x+32}{2005}+1\right)-\left(\dfrac{x+34}{2003}+1\right)-\left(\dfrac{x+36}{2001}+1\right)=0\)

\(\dfrac{x+30+2007}{2007}+\dfrac{x+32+2005}{2005}-\dfrac{x+34+2003}{2003}-\dfrac{x+36+2001}{2001}=0\)\(\dfrac{x+2037}{2007}+\dfrac{x+2037}{2005}-\dfrac{x+2037}{2003}-\dfrac{x+2037}{2001}=0\)\(\left(x+2037\right).\left(\dfrac{1}{2007}+\dfrac{1}{2005}-\dfrac{1}{2003}-\dfrac{1}{2001}\right)=0\)

x+2037=0

x = -2037

3 tháng 7 2017

\(\dfrac{x}{2000}+\dfrac{x+1}{2001}+\dfrac{x+2}{2002}+\dfrac{x+3}{2003}+\dfrac{x+4}{2004}=5\)

\(\Leftrightarrow\dfrac{x}{2000}-1+\dfrac{x+1}{2001}-1+\dfrac{x+2}{2002}-1+\dfrac{x+3}{2003}-1+\dfrac{x+4}{2004}-1=0\)

\(\Leftrightarrow\dfrac{x-2000}{2000}+\dfrac{x-2000}{2001}+\dfrac{x-2000}{2002}+\dfrac{x-2000}{2003}+\dfrac{x-2000}{2004}=0\)

\(\Leftrightarrow\left(x-2000\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)=0\)

\(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}>0\)

\(\Leftrightarrow x-2000=0\Leftrightarrow x=2000\)

Vậy x = 2000