K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+2ab\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{4}{a+b}\)

\(\Leftrightarrow=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(dpcm\right)\)

24 tháng 4 2018

Ta có: (a-b)2 \(\ge\) 0 (dấu "=" xảy ra khi a=b)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\) (vì a,b > 0 )

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) . Dấu "=" xảy ra khi a=b.

10 tháng 4 2016

(a-b)^2>=0

<=>a^2-2ab+b^2>=0

<=>a^2+2ab+b^2>=4ab

<=>(a+b)^2>=4ab

<=>(a+b)^2/ab>=4

<=>(a+b)(a+b)/ab>=4

<=>(a+b)(1/a+1/b)>=4

10 tháng 4 2016

bài này dễ thôi bạn ạ

(1/a+1/b)(a+b)=1+a/b+b/a+1

                    =2+(a/b+b/a)

                   = 2 + (a+b)^2/ab >= 2+2 >=4 => DPCM 

9 tháng 5 2019

a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)

Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)

b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)

Giả sử a<b, ta đặt b=a+k(k>0)

Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)

Chứng minh tương tự với a>b

9 tháng 5 2019

cm cái j v bn ? 

27 tháng 5 2016

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=2+\frac{a^2+b^2}{ab}\ge4\)

\(\frac{a^2+b^2}{ab}\ge2\)

\(a^2+b^2\ge2ab\) (điều này đúng nên BĐT đúng)

27 tháng 5 2016

Ta có \(\left(a-b\right)^2=a^2-2ab+b^2\Rightarrow a^2+b^2=2ab\Rightarrow\frac{a^2+b^2}{ab}=2\Rightarrow\frac{a}{b}+\frac{b}{a}=2\)

Lại có:\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=\frac{a}{a}+\frac{b}{a}+\frac{a}{b}+\frac{b}{b}=2+2=4\)

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

27 tháng 5 2016

1/a+1/b>=4/a+b 
<=> (a+b)/ab>=4/(a+b) 
<=> (a+b)^2 >=4ab 
<=> a^2 +2ab +b^2 - 4ab>=0 
<=> (a-b)^2>=0 => đpcm 

II>> 

a^3+b^3>=ab(a+b) 
<=> (a+b)(a^2 -ab+b^2)>=ab(a+b) 
<=> a^2 -ab+b^2>=ab 
<=> (a-b)^2 >=0 => đpcm

27 tháng 5 2016

Vì a>0 và b>0 nên ta áp dụng bất đẳng thức cosi ta có:

\(\frac{1}{a}\)+\(\frac{1}{b}\)\(\ge\)2\(\sqrt{\frac{1}{ab}}\) (1)

a+b\(\ge\)2\(\sqrt{ab}\) (2)

nhân vế với vế của (1) và (2) ta có:

(\(\frac{1}{a}\)+\(\frac{1}{b}\))(a+b)\(\ge\)2\(\sqrt{\frac{1}{ab}}\).2\(\sqrt{ab}\)

=>(\(\frac{1}{a}\)+\(\frac{1}{b}\))(a+b)\(\ge\)4

dấu = xảy ra khi a=b

27 tháng 5 2016

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)

<=> \(1+\frac{a}{b}+\frac{b}{a}+1\ge4\)

<=> \(\frac{a^2+b^2}{ab}\ge4-1-1=2\)

<=> \(a^2+b^2\ge2ab\)

<=> \(a^2-2ab+b^2\ge0\)

<=> \(\left(a-b\right)^2\ge0\) ( điều này đúng, theo tính chất luỹ thừa bậc chẵn nên => đpcm)

Dấu bằng xảy ra <=> a=b

27 tháng 5 2016

BĐT<=>a+b/ab>=4/a+b 
<=>(a+b)^2>=4ab 
<=>(a-b)^2>=0

22 tháng 9 2019

Áp dụng BĐT Cô -si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)