K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

x2-2x+4

=x2-x-x+1+3

=x(x-1)-(x-1)+3

=(x-1)(x-1)+3

=(x-1)2+3>0

=> đa thức x2-2x+4 vô nghiệm

11 tháng 3 2019

Ta cần tìm x sao cho: \(P\left(x\right)=2\left(x-3\right)^2+5=0\)

Ta có: \(P\left(x\right)=2\left(x-3\right)^2+5\ge5>0\forall x\)

Vậy đa thức vô nghiệm.(đpcm)

21 tháng 4 2019

\(x^4\ge0;3x^2\ge0;1>0\Rightarrow x^4+3x^2+1>0\Rightarrowđpcm\)

21 tháng 4 2019

Ta có: \(\hept{\begin{cases}x^4\ge0\\3x^2\ge0\\1>0\end{cases}\Rightarrow}Q\left(x\right)=x^4+3x^2+1\ge1>0\)với \(\forall x\inℝ\)

Vậy Q(x) không có nghiệm với mọi x thuộc R

a)cho A(x) =m*32 -2*3=0=>9m-6=0=>9m=6=>m=2/3

b)có B(x)=x2 +2*2*x+4+6

Áp dụng hằng đẳng thức a2 +2ab+b2=(a+b)2

có B(x)=(x+2)2 +6 >0

=>đpcm

1 tháng 5 2017

a)\(A\left(3\right)=m.3^2-2.3=9m-6=0\Rightarrow9m=6\Rightarrow m=\frac{2}{3}\)

b)\(B\left(x\right)=x^2+4x+10=\left(x^2+4x+4\right)+6=\left(x+2\right)^2+6\ge6>0\)

=>đa thức vô nghiệm

13 tháng 9 2016

x2+6x+10

=x2+3x+3x+3.3+1

=x(3+x)+3(3+x)+1

=(3+x)(3+x)+1

=(3+x)2+1

Vì (3+x)2>hoặc=0

=> (3+x)2+1>1

Vậy đa thức trên ko có nghiệm

13 tháng 9 2016

\(B\left(x\right)=x^2+x+1\)

        \(=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)

        \(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

.Ta có : \(\left(x+\frac{1}{2}\right)^2\ge0\)

            \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

            \(\Rightarrow B\left(x\right)>0\) với mọi x

Vậy \(B\left(x\right)\) vô nghiệm .

1 tháng 5 2017

Ta co \(x^2+4x+5=\left(x^2+4x+4\right)+1\)\(=\left(x+2\right)^2+1\)

      Ma \(\left(x+2\right)^2\ge0\forall x\) Nen \(\left(x+2\right)^2+1>0\)

              Vay da thuc tren khong co nghiem

3 tháng 8 2016

\(x^2+x+1=0\)

\(=>x^2+2x+1=x\)

\(=>\left(x+1\right)^2=x\)

\(=>x+1=\sqrt{x}\)

=>loại

3 tháng 8 2016

\(B\left(x\right)=x^2+x+1\)

\(=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x^2+2.x.\frac{1}{2}+\frac{1^2}{2^2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có :

\(\left(x+\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow B\left(x\right)>0\)với mọi \(x\)

Vậy \(B\left(x\right)\)vô nghiệm.