K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2015

x+y=2

=> (x+y)2=4

=> x2+y2+2xy = 4

Áp dụng x2+y>= 2xy   

=> x2+y2+2xy >= 4xy

Mà x2+y2+2xy = 4

=> 4>= 4xy

=> xy <= 1

27 tháng 9 2019

x+y=2

\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...

y=1; y=2; y=3; y=4;...

\(\Rightarrow\)x.y= 1.1=1=1

0.2=0<1

-1.3=-3<1

-2.4=-8<1

.............

\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1

27 tháng 9 2019

Ta có: \(x+y=2\)

\(\Rightarrow x=2-y.\)

Có: \(x.y=\left(2-y\right).y\)

\(\Rightarrow x.y=2y-y^2\)

\(\Rightarrow x.y=-y^2+2y-1+1\)

\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)

\(\left(y-1\right)^2\ge0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)

\(\Rightarrow x.y\le1\left(đpcm\right).\)

Chúc bạn học tốt!

15 tháng 6 2020

Đề của bạn thiếu dấu bằng.

Ta có: 

\(xy=\frac{4xy}{4}\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Dấu "=" xảy ra <=> x = y = 1/2

9 tháng 10 2020

sai rồi

14 tháng 1 2018

Ta có \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)\(\Rightarrow x-2\sqrt{xy}+y\ge0\)\(\Rightarrow x+y\ge2\sqrt{xy}\)

Mà x + y = 2 \(\Rightarrow\)\(2\ge2\sqrt{xy}\)\(\Rightarrow1\sqrt{xy}\le1\)\(\Rightarrow xy\le1\)

14 tháng 1 2018

 Vi 2 = 2 + 0 ; 1 + 1 .nen x.y = 2 . 0 ; 1.1 chi bang 0 hoac 1 nen x.y <= 1

15 tháng 8 2020

Bài 1 : 

a) \(x^2+y^2\)

\(\Leftrightarrow x^2+2xy+y^2-2xy\)

\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)

b) \(x^3+y^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)

\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)

c) \(x^4+y^4\)

\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)

15 tháng 8 2020

Bài 3:

Có:    \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)

=>     \(x^3+y^3+z^3=\left(-z\right)^3-3xy.-z+z^3\)

=>     \(x^3+y^3+z^3=-z^3+z^3+3xyz=3xyz\)

=> TA CÓ ĐPCM.

VẬY      \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)