K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

\(\dfrac{1}{a}+\dfrac{1}{b}\)\(\dfrac{4}{a+b}\)

Do : a > 0 , b > 0

=> a + b > 0

Nhân từng vế của BĐT cần CM với a + b , ta có :

\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(a+b\right)\)\(\left(\dfrac{4}{a+b}\right)\left(a+b\right)\)

<=> 1 + \(\dfrac{a}{b}+\dfrac{b}{a}\) + 1 ≥ 4

<=> 2 + \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 4 ( 1)

Áp dụng BĐT : \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2

(1) <=> 2 + 2 ≥ 4 ( luôn đúng )

KL.....

15 tháng 4 2018

Câu hỏi của Nguyễn Ngọc Anh Thy - Toán lớp 8 | Học trực tuyến

23 tháng 9 2021

Áp dụng BĐT cosi:

\(\left(a+\dfrac{1}{a}\right)\left(b+\dfrac{1}{b}\right)4=ab+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{1}{ab}\\ \ge ab+\dfrac{1}{ab}+2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=ab+\dfrac{1}{ab}+2\)

Áp dụng tiếp BĐT cosi:

\(ab+\dfrac{1}{ab}=\left(16ab+\dfrac{1}{ab}\right)-15ab\\ \ge2\sqrt{\dfrac{16ab}{ab}}-15ab=8-15ab\\ \ge8-15\cdot\dfrac{a+b}{4}=8-15\cdot\dfrac{1}{4}=\dfrac{17}{4}\)

\(\Leftrightarrow ab+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{1}{ab}\ge\dfrac{17}{4}+2=\dfrac{25}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

NV
31 tháng 8 2021

Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai

1 tháng 9 2021

là c\(^4\) ạ

 

28 tháng 4 2023

loading...

 

꧁༺ml78871600༻꧂  
25 tháng 5 2023

Theo giả thiết kết hợp sử dụng BĐT AM - GM có:

\(\left(a+b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-\left[c\left(a+b\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)

\(\le\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-2\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}=\left[\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\right]^2\)

Suy ra \(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\ge2\Leftrightarrow\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}\ge3\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge7\)

Khi đó, sử dụng BĐT Cauchy - Schwarz ta có:

\(\left(a^4+b^4+c^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\ge\left[\sqrt{\left(a^4+b^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}\right)}+1\right]^2\)

\(=\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+1\right)^2=\left[\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-1\right]^2\ge\left(7^2-1\right)^2=2304\)

Đẳng thức xảy ra khi và chỉ khi \(ab=c^2\) và \(\dfrac{a}{b}+\dfrac{b}{a}=7\)

(a+b-c)(1/a+1/b-c)=(a+b)(1/a+1/b)+1-[c(a+b)+c(1/a+1/b)]<=(a+b)(1/a+1/b)+1-2căn (a+b)(1/a+1/b)

=[(căn (a+b)(1/a+1/b))-1]^2

=>\(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1>=2\)

=>\(\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}>=3\)

=>a/b+b/a>=7

(a^4+b^4+c^4)(1/a^4+1/b^4+1/c^4)>=[căn ((a^4+b^4)(1/a^4+1/b^4))+1]^2

=(a^2/b^2+b^2/a^2+1)^2=[(a/b+b/a)^2-1]^2>=(7^2-1)^2=2304

=>ĐPCM

14 tháng 6 2019

11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.

Dấu "=" xảy ra khi a= b=c

14 tháng 6 2019

Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!

9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)

\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)

"=" <=> a = b = c = 1.

Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)

\(\sum_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}>=\sum_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)

\(\sum_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}>=\dfrac{2\left(a+b+c\right)^2}{\sum2\sqrt{2+2ab}}>=\dfrac{3}{2}\)

\(\sum_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}>=\dfrac{3}{2}\)

Cộng các BĐT trên, ta được ĐPCM

25 tháng 5 2023

Ta có:

\(\Sigma_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\Sigma_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\Sigma_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\Sigma_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)

Sử dụng BĐT Cauchy - Schwarz và AM - GM có:

\(\Sigma_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}\ge\dfrac{2\left(a+b+c\right)^2}{\Sigma2\sqrt{2+2ab}}\ge\dfrac{2\left(a+b+c\right)^2}{ab+bc+ca+9}\ge\dfrac{3}{2}\)

Tương tự: \(\Sigma_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)

Cộng 2 BĐT ta được:

\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ca}}\ge3\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

 
NV
13 tháng 8 2021

\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2019}\Rightarrow\dfrac{a+b}{ab}=\dfrac{1}{2019}\Rightarrow2019=\dfrac{ab}{a+b}\)

\(\dfrac{1}{a}=\dfrac{1}{2019}-\dfrac{1}{b}=\dfrac{b-2019}{2019b}\Rightarrow b-2019=\dfrac{2019b}{a}\)

\(\dfrac{1}{b}=\dfrac{1}{2019}-\dfrac{1}{a}=\dfrac{a-2019}{2019a}\Rightarrow a-2019=\dfrac{2019a}{b}\)

\(\Rightarrow\sqrt{a-2019}+\sqrt{b-2019}=\sqrt{\dfrac{2019a}{b}}+\sqrt{\dfrac{2019b}{a}}=\dfrac{\sqrt{2019}\left(a+b\right)}{\sqrt{ab}}=\sqrt{\dfrac{ab}{a+b}}.\dfrac{a+b}{\sqrt{ab}}=\sqrt{a+b}\)

10 tháng 2 2021

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

10 tháng 2 2021

$a,b,c$ ở đây chỉ có vai trò là hoán vị thôi nên không được giả sử $a\ge b\ge c$ đâu ạ. Nên cách này chưa trọn vẹn.