cho a,b,c khác 0 tính \(T=x^{2016}+y^{2016}+z^{2016}\) biết
\(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết : \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=1\)
\(\Rightarrow A+2.\left(\dfrac{xyc+yza+xzb}{abc}\right)=1\left(1\right)\)
Mà theo gt : \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bzx+cxy=0\)
Do đó : \(\left(1\right)=A=1\)
Bài này dễ thôi:vv
Theo đề ta có: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\Leftrightarrow\dfrac{xbc+yac+zab}{abc}=0\Leftrightarrow xbc+yac+zab=0\)
Lại có:\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\Rightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=4\)
=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ca}{xz}\right)=4\)
=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{abz+bcx+cay}{xyz}\right)=4\)
=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2.0=4\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=2\)
Vậy...
Lời giải:
Ta có:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Rightarrow x^2+y^2+z^2=\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)(a^2+b^2+c^2)\)
\(\Leftrightarrow x^2+y^2+z^2=x^2+\frac{x^2b^2}{a^2}+\frac{x^2c^2}{a^2}+y^2+\frac{y^2a^2}{b^2}+\frac{y^2c^2}{b^2}+z^2+\frac{z^2a^2}{c^2}+\frac{z^2b^2}{c^2}\)
\(\Leftrightarrow \frac{x^2b^2}{a^2}+\frac{x^2c^2}{a^2}+\frac{y^2a^2}{b^2}+\frac{y^2c^2}{b^2}+\frac{z^2a^2}{c^2}+\frac{z^2b^2}{c^2}=0(*)\)
Bởi vì mỗi số hạng trong tổng $(*)$ đều là những số không âm, cho nên để tổng các số không âm bằng $0$ thì bản thân mỗi số đó phải bằng $0$
Do đó:
\(\Leftrightarrow \frac{x^2b^2}{a^2}=\frac{x^2c^2}{a^2}=\frac{y^2a^2}{b^2}=\frac{y^2c^2}{b^2}=\frac{z^2a^2}{c^2}=\frac{z^2b^2}{c^2}=0\)
Do $a,b,c\neq 0$ nên \(x^2=y^2=z^2=0\Rightarrow x=y=z=0\)
Khi đó:\(T=x^{2016}+y^{2016}+z^{2016}=0\)