Cho biểu thức: C = \(^{\dfrac{-1}{\sqrt{x}-2}}\)( ĐKXĐ: x >0 , x ≠ 1)
Tìm x để C < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk x >= 0 ; x khác 1/4
Ta có \(^{P=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}+1}}=\dfrac{5\sqrt{x}+1}{2\sqrt{x}+1}\)
\(\Rightarrow5\sqrt{x}+1⋮2\sqrt{x}+1\Leftrightarrow10\sqrt{x}+2⋮2\sqrt{x}+1\)
\(\Leftrightarrow5\left(2\sqrt{x}+1\right)-3⋮2\sqrt{x}+1\Rightarrow2\sqrt{x}+1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
\(2\sqrt{x}+1\) | 1 | -1 | 3 | -3 |
x | 0 | loại | 1 | loại |
đk x > 0
\(\dfrac{A}{B}=\dfrac{\dfrac{x+2\sqrt{x}}{x}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{7}{4}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+4-7\sqrt{x}}{4\sqrt{x}}< 0\Leftrightarrow\dfrac{-3\sqrt{x}+4}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3\sqrt{x}+4\ne0\\-3\sqrt{x}+4< 0\\4\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{16}{9}\\x< \dfrac{16}{9}\\x\ne0\end{matrix}\right.\)
ĐKXĐ:
\(\left\{{}\begin{matrix}2-\sqrt{x}\\2+\sqrt{x}\\x-4\end{matrix}\right.\ne0\Leftrightarrow x\ne4\)
P=\(\dfrac{\left(2+\sqrt{x}\right)\left(2+\sqrt{x}\right)-\left(2-\sqrt{x}\right)\left(2-\sqrt{x}\right)+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
P=\(\dfrac{\left(4+4\sqrt{x}+x\right)-\left(4-4\sqrt{x}+x\right)+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
P=\(\dfrac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
P=\(\dfrac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
P=\(\dfrac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ P=\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)
b) Th P>0
<=> \(\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)>0<=>\(4\sqrt{x}\)>0 <=> x>0(x\(\ne\)4)
TH P < 0
<=>\(\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)<0 <=>\(4\sqrt{x}\)<0<=> \(\sqrt{x}< 0\)(vô lý)
c) |P|=1
=>P=1 hoặc P=-1
TH P=1
=>\(\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)=1 <=> \(4\sqrt{x}\)=\(2-\sqrt{x}\) <=> x=\(\dfrac{4}{25}\)
TH P= -1
=>\(\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)=-1<=> \(4\sqrt{x}\)=\(\sqrt{x}-2\)<=> \(\sqrt{x}=-\dfrac{2}{3}\)(vô lý)
Lời giải:
$5A+B=\frac{5\sqrt{x}+1}{2\sqrt{x}+1}$
$2(5A+B)=\frac{10\sqrt{x}+2}{2\sqrt{x}+1}=\frac{5(2\sqrt{x}+1)-3}{2\sqrt{x}+1}=5-\frac{3}{2\sqrt{x}+1}$
$5A+B$ nguyên
$\Rightarrow 2(5A+B)$ nguyên
$\Leftrightarrow 5-\frac{3}{2\sqrt{x}+1}$ nguyên
$\Leftrightarrow \frac{3}{2\sqrt{x}+1}$ nguyên
Ta thấy: $\frac{3}{2\sqrt{x}+1}\leq 3$ với mọi $x\geq 0$ và $\frac{3}{2\sqrt{x}+1}>0$ với mọi $x\geq 0$
Do đó $\frac{3}{2\sqrt{x}+1}$ nguyên thì nhận các giá trị $1,2,3$
$\Leftrightarrow x=0; \frac{1}{16}; 1$
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
\(A=\left(\dfrac{1}{x-4}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}}\)
\(=\left(\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)
\(=\dfrac{1+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\inƯ\left(2\right)\)
=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)
=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)
=>\(x\in\left\{9;1;16;0\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{9;16\right\}\)
c: A<0
=>\(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
Kết hợp ĐKXĐ, ta được: 0<x<4 và x<>1
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
a)ĐKXĐ:\(\begin{cases}x\ge0\\2\sqrt{x}-2\ne0\\1-x\ne0\\\end{cases}\)
`<=>` \(\begin{cases}x\ge0\\x\ne1\\\end{cases}\)
`B=1/(2sqrtx-2)-1/(2sqrtx+2)+sqrtx/(1-x)`
`=1/(2(sqrtx-1))-1/(2(sqrtx+1))-sqrtx/(x-1)`
`=(sqrtx+1-(sqrtx-1)-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`
`=(2-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`
`=(2(1-sqrtx))/(2(sqrtx-1)(sqrtx+1))`
`=-1/(sqrtx+1)`
`b)x=3`
`=>B=(-1)/(sqrt3+1)`
`=(-(sqrt3-1))/(3-1)`
`=(1-sqrt3)/2`
`c)|A|=1/2`
`<=>|(-1)/(sqrtx+1)|=1/2`
`<=>|1/(sqrtx+1)|=1/2`
`<=>1/(sqrtx+1)=1/2` do `1>0,sqrtx+1>=1>0`
`<=>sqrtx+1=2`
`<=>sqrtx=1`
`<=>x=1` loại vì `x ne 1`.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
b) Thay x=3 vào B, ta được:
\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)
c) Ta có: \(\left|A\right|=\dfrac{1}{2}\)
nên \(\left[{}\begin{matrix}A=\dfrac{1}{2}\\A=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{\sqrt{x}+1}=\dfrac{1}{2}\\\dfrac{-1}{\sqrt{x}+1}=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=-2\\\sqrt{x}+1=2\end{matrix}\right.\Leftrightarrow x=1\)(loại)
a) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{x-1}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\left(dkxd:x\ge0;x\ne1;x\ne4\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x-4}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b) Với \(x\ge0;x\ne1;x\ne4\):
Thay \(x=3+2\sqrt{2}\) vào \(P\), ta được:
\(P=\dfrac{\sqrt{3+2\sqrt{2}}+2}{\sqrt{3+2\sqrt{2}}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}+2}{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+2}{\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(=\dfrac{\sqrt{2}+1+2}{\sqrt{2}+1-1}\)
\(=\dfrac{\sqrt{2}+3}{\sqrt{2}}\)
\(=\dfrac{2+3\sqrt{2}}{2}\)
c) Với \(x\ge0;x\ne1;x\ne4\),
\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)
Để \(P\) có giá trị nguyên thì \(\dfrac{3}{\sqrt{x}-1}\) có giá trị nguyên
\(\Rightarrow 3\vdots\sqrt x-1\\\Rightarrow \sqrt x-1\in Ư(3)\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{2;4;0\right\}\)
\(\Rightarrow x\in\left\{4;16;0\right\}\)
Kết hợp với ĐKXĐ của \(x\), ta được:
\(x\in\left\{0;16\right\}\)
Vậy: ...
\(\text{#}Toru\)
a) \(ĐK:x\ge0,x\ne1\)
\(=\dfrac{3x+3\sqrt{x}-3-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+4+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2x+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
b) \(P=\dfrac{2\sqrt{x}}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Kết hợp với đk:
\(\Rightarrow0\le x< 1\)
Để C<1 thì C-1<0
\(\Leftrightarrow\dfrac{-1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}-2}>0\)
=>x>4 hoặc x<1