Cho A = \(\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\).Tìm các số nguyên x;y;z để \(0\le A\le1\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
Phân tích vế trái ta được: 2(x2 + y2 + z2 − (xy + yz + zx)
Phân tích vế phải ta được: 6(x2 + y2 + z2 − (xy + yz + zx)
Vì VT = VP nên VP - VT=0
→ 4(x2 + y2 + z2 − (xy + yz + zx)) = 0
→2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0
→2((x − y)2 + (y − z)2 + (z − x)2) = 0
→(x − y)2 + (y − z)2 + (z − x)2 = 0
→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0
→x = y = z
f: \(x^2y^2+2xy+1=\left(xy+1\right)^2\)
g: \(\left(3x-2y\right)^2+2\left(3x-2y\right)+1=\left(3x-2y+1\right)^2\)
h: \(\left(x-3y\right)^2-8\left(x-3y\right)+16=\left(x-3y-4\right)^2\)
i: \(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2=4x^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\ge0\\\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\le1\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
(1) đúng với mọi x,y,z thuộc R =>đúng với mọi x,y,z thuộcZ
có
điều kiện cần thỏa mãn (2)
\(\left\{{}\begin{matrix}\left|3x-2y\right|\le1\\\left|y+z\right|\le1\\\left|z-x\right|\le1\end{matrix}\right.\) \(\begin{matrix}\left(a\right)\\\left(b\right)\\\left(c\right)\end{matrix}\)
\(\left(b\right)+\left(c\right)\Leftrightarrow\left|y+z\right|+\left|z-x\right|=\left|y+z\right|+\left|x-z\right|\ge\left|y+z+x-z\right|=\left|y+x\right|\) (d)
\(\left|3x-2y\right|+\left|2y+2x\right|\ge\left|3x-2y+2y+2x\right|=\left|5x\right|\)
cần : \(\left|5x\right|\le2\Leftrightarrow x=\left\{0;\pm1\right\}\)
x=0 từ (a) => y =0 ; từ (b) (c)=z =0 ; (x;y;z) =(0;0;0)
x=1 từ (a) =y={1;2}
với y=1 từ (b) => z=-1 ; (x;y;z) =(1;1;-1)
với y=2 từ (b) => z =-2 từ (c) $|-2-1| \ne 0$ loại
x=-1 từ (a) =y={-1;-2}
với y=-1 từ (b) => z= 1 ; (x;y;z) =(-1;-1;1)
với y=-2 từ (b) => z = 2 từ (c) $| 2+1| \ne 0$ loại
kết luận
(x;y;z) =(0;0;0);(1;1;1); (-1;-1;1)
cảm ơn