cho \(x^2-2x+3\le P\left(x\right)< 15x^2-30x+17\)
biết \(P\left(13\right)=2018\) tính P(0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ bđt Cauchy : \(a+b\ge2\sqrt{ab}\) ta suy ra được \(ab\le\frac{\left(a+b\right)^2}{4}\)
Áp dụng vào bài toán của bạn :
a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{\left(x+3+5-x\right)^2}{4}=...............\)
b/ Tương tự
c/ \(y=\left(x+3\right)\left(5-2x\right)=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=.............\)
d/ Tương tự
e/ \(y=\left(6x+3\right)\left(5-2x\right)=3\left(2x+1\right)\left(5-2x\right)\le3.\frac{\left(2x+1+5-2x\right)^2}{4}=.......\)
f/ Xét \(\frac{1}{y}=\frac{x^2+2}{x}=x+\frac{2}{x}\ge2\sqrt{x.\frac{2}{x}}=2\sqrt{2}\)
Suy ra \(y\le\frac{1}{2\sqrt{2}}\)
..........................
g/ Đặt \(t=x^2\) , \(t>0\) (Vì nếu t = 0 thì y = 0)
\(\frac{1}{y}=\frac{t^3+6t^2+12t+8}{t}=t^2+6t+\frac{8}{t}+12\)
\(=t^2+6t+\frac{8}{3t}+\frac{8}{3t}+\frac{8}{3t}+12\)
\(\ge5.\sqrt[5]{t^2.6t.\left(\frac{8}{3t}\right)^3}+12=.................\)
Từ đó đảo ngược y lại rồi đổi dấu \(\ge\) thành \(\le\)
\(A=\left(13+x\right)\left(17+x\right)\left(2-x\right)\le0\)
Nếu \(x< -17\), ta có 13 + x < 0, 17 + x \(\le\) 0, 2 - x > 0
Vậy nên A \(>\) 0,
Nếu \(-17\le x\le-13\), ta có: 13 + x < 0 , 17 + x > 0, 12 - x > 0. Vậy thì \(A\le0\)
Nếu \(-13< x< 2\), ta có: 13 + x > 0, 17 + x > 0, 2 - x > 0. Vậy nên \(A>0\)
Nếu \(x\ge2\) , ta có \(13+x>0,17+x>0,2-x\ge0\). Vậy nên \(A\le0\)
Vậy để \(A\le0\) thì \(-17\le x\le-13\) hoặc \(x\ge2.\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
7) \(\dfrac{-5}{17}+\dfrac{3}{17}\le\dfrac{x}{17}\le\dfrac{13}{17}+\dfrac{-11}{17}\)
\(\Rightarrow\dfrac{-2}{17}\le\dfrac{x}{17}\le\dfrac{2}{17}\)
\(\Rightarrow-2\le x\le2\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{6}{12}-\dfrac{2}{12}\right)\)
\(\Rightarrow\dfrac{2}{3}\cdot\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}\cdot\dfrac{4}{12}\)
\(\Rightarrow\dfrac{22}{36}\le\dfrac{x}{18}\le\dfrac{28}{36}\)
\(\Rightarrow\dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\)
\(\Rightarrow x\in\left\{11;12;13;14\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{3}{6}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}.\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}.\dfrac{2}{6}\\ \dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\\ \Rightarrow11\le x\le14\\ \Rightarrow x\in\left\{11;12;13;14\right\}\)
( x - \(\sqrt{3}\) )\(^{2016}\) \(\ge\) 0 với mọi x . Kí hiệu là 1
(y\(^2\) - 3 )\(^{2018}\)\(\ge\) 0 với mọi y . Kí hiệu là 2
Từ 1 và 2 suy ra ( x - \(\sqrt{3}\) )\(^{2016}\) = 0 và (y\(^2\) - 3 )\(^{2018}\) = 0 . Kí hiệu là 3
Từ 3 suy ra x - \(\sqrt{3}\) = 0 suy ra x = \(\sqrt{3}\)
y\(^2\)- 3 = 0 suy ra y\(^2\) = 0 suy ra y =..........
2. Trên tử đặt 3 ra ngoài. Dưới mẫu đặt 11 ra ngoài rồi triệt tiêu.
3. 17^18 = (17^3)^6 = 4913^6
63^12 = (63^2)^6 = 3969 ^6
Vì 4913 > 3969 nên 4913^6 > 3969^6 hay 17^18>63^12