tính giá trị của đa thức sau biết x+y-2=0
M= \(x^3+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2(x+y)+3xy(x+y)+5x2y2(x+y)+2
A=2.0+3xy.0+5x2y2.0+2
A=2
B=xy(x+y)+2x2y (x+y)+5
B=xy.0+2x2y.0+5=5
a,Ta có 2(x+y)+3xy(x+y)+5x2y2(x+y)+4
Xg thay x+y=0 vào là dc bn nhó
Chúc bn hok tốt
\(M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+y+x-2+1\)
\(=1\)
\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y-2\right)+2\)
Ta có : \(x+y-2=0\Rightarrow x+2=-y\)
\(\Rightarrow N=-x^2y-xy^2+2xy+2\)
\(N=-xy\left(x+y-2\right)+2=2\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3=3\)
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)
\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)
\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)
\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(M=x^2.0+y.0+0+1\)
\(M=1\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)
\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
\(N=x^2.0-xy.0+2.0+2\)
\(N=2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)
\(P=x^3.0+x^2y.0-x.0+3\)
\(P=3\)
Tích mình nha!
a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)
b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)
\(A=2x^4+4x^3y-x^3y-4x^3+x^2y^2-2x^2y-2x+2x+3\)
\(A=2.\left(x^4+2x^3y+x^2y^2\right)-x^2y^2-x^3y-4x^3-2x^2y+3\)
\(A=2.\left(x^2+xy\right)^2-\left(x^2y^2+x^3y\right)-\left(4x^3+2x^2y\right)+3\)
\(A=2.x^2.\left(x+y\right)^2-x^2y\left(y+x\right)-2x^2\left(2x+y\right)+3\)
\(A=8.x^2-2.x^2y-2x^2\left(x+2\right)+3=8x^2-2x^2\left(2-x\right)-2x^3-4x^2+3\)
\(A=8x^2-4x^2 +2x^3-2x^3-4x^2+3=3\)là hằng số
=> ĐPCM
Hình như đề sai. Đề đúng nè
M=x4+2x3y-2x3+x2y2-2x2y-x(x+y)+2x+3
M=(x4+x3y-2x3)+(x3y+x2y2-2x2y)-x(x+y-2)+3
M=x3(x+y-2)+x2y(x+y-2)-x(x+y-2)+3=x3.0+x2y.0-x.0+=0+0-0+3=3
Vậy đa thức M=3
mơn