cho biểu thức
P=\(\left(\dfrac{1}{y-\sqrt{y}}+\dfrac{1}{\sqrt{y}-1}\right):\dfrac{\sqrt{y}}{y-2\sqrt{y}+1}\)
a, rút gọn
b, tìm các giá trị của y để p>2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(\left\{{}\begin{matrix}y\ge0\\y\ne1\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{1}{1-\sqrt{y}}+\dfrac{1}{1+\sqrt{y}}\right):\left(\dfrac{1}{1-\sqrt{y}}-\dfrac{1}{1+\sqrt{y}}\right)+\dfrac{1}{1-\sqrt{y}}\)
\(=\dfrac{1+\sqrt{y}+1-\sqrt{y}}{\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)}:\dfrac{1+\sqrt{y}-1+\sqrt{y}}{\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)}+\dfrac{1}{1-\sqrt{y}}\)
\(=\dfrac{2}{2\sqrt{y}}-\dfrac{1}{\sqrt{y}-1}\)
\(=\dfrac{\sqrt{y}-1-\sqrt{y}}{\sqrt{y}\left(\sqrt{y}-1\right)}\)
\(=\dfrac{-1}{\sqrt{y}\left(\sqrt{y}-1\right)}\)
2)
\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)
\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)
1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)
Ta có: \(x^2+2y^2=9\)
\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)
\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)
\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)
\(\Leftrightarrow123m^2+206m-45=0\)
Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi
a) ĐKXĐ: \(x,y\ge0\)
\(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}=\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1+\sqrt{xy}}=\sqrt{x}-\sqrt{y}\)
b) \(x=\left(1-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)
\(y=3-\sqrt{8}\Rightarrow\sqrt{y}=\sqrt{3-\sqrt{8}}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
\(\Rightarrow M=\left(\sqrt{3}-1\right)-\left(\sqrt{2}-1\right)=\sqrt{3}-\sqrt{2}\)
Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)
a) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\sqrt{\dfrac{\left(\sqrt{x+1}\right)^2}{\left(\sqrt{x}+1\right)^2}}\)
=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1};x\ge0\)
b) Ta có: \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}\)
\(=\dfrac{1}{x-1}\)
Lời giải:
a)ĐKXĐ: \(y>0; y\neq 1\)
Ta có:
\(P=\left(\frac{1}{y-\sqrt{y}}+\frac{1}{\sqrt{y}-1}\right): \frac{\sqrt{y}}{y-2\sqrt{y}+1}\)
\(P=\left(\frac{1}{y-\sqrt{y}}+\frac{\sqrt{y}}{y-\sqrt{y}}\right).\frac{y-2\sqrt{y}+1}{\sqrt{y}}\)
\(P=\frac{\sqrt{y}+1}{y-\sqrt{y}}.\frac{(\sqrt{y}-1)^2}{\sqrt{y}}\)
\(P=\frac{(\sqrt{y}+1)(\sqrt{y}-1)(\sqrt{y}-1)}{\sqrt{y}(\sqrt{y}-1).\sqrt{y}}=\frac{(\sqrt{y}-1)(\sqrt{y}+1)}{\sqrt{y}.\sqrt{y}}=\frac{y-1}{y}\)
b)
\(P>2\Leftrightarrow \frac{y-1}{y}>2\)\(\Leftrightarrow y-1>2y\) ( \(y>0\) nên nhân 2 vế với $y$ thì dấu không đổi chiều )
\(\Leftrightarrow y< -1\)
Điều này hoàn toàn vô lý do \(y>0\)
Vậy không tồn tại giá trị của $y$ để $P>2$