K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình giải phương pháp tìm miền giá trị

\(A=\dfrac{4x+3}{x^2+1}\)

\(\Leftrightarrow Ax^2-4x+A-3=0\)(1)

+)Xét A=0\(\Rightarrow-4x-3=0\Leftrightarrow x=-\dfrac{3}{4}\)

+)Xét \(A\ne0\)

=>Để pt(1) có nghiệm thì \(\Delta=16-4A\left(A-3\right)\ge0\)

\(\Leftrightarrow4-A\left(A-3\right)\ge0\)

\(\Leftrightarrow-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(-A-1\right)\ge0\)

\(\Leftrightarrow-1\le A\le4\)

Vậy \(MINA=-1\Leftrightarrow\)x=-2

\(MAX=4\Leftrightarrow x=\)\(\dfrac{1}{2}\)

NV
9 tháng 4 2021

\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)

Biểu thức này không tồn tại max mà chỉ tồn tại min

\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)

NV
8 tháng 4 2021

Bạn coi lại mẫu số

23 tháng 12 2017

 A = (4x + 3)/(x² + 1) 

CM bất đẳng thức phụ : (a² + b²)(c² + d²) ≥ (ac + bd)² (1) 

Đây là bất đẳng thức bunhiacopxki , nếu em chưa biết thì anh CM luôn : 

(1) <=> a²c² + a²d² + b²c² + b²d² ≥ a²c² + 2abcd + b²d² 

<=> a²d² - 2.ad.bc + b²c² ≥ 0 

<=> (ad - bc)² ≥ 0 --> luôn đúng --> bđt (1) được CM 

- Dấu " = " xảy ra <=> ad = bc <=> a/c = b/d 

- Áp dụng bđt (1) ta có : (4.x + 3.1)² ≤ (4² + 3²)(x² + 1²) 

<=> (4x + 3)² ≤ 25(x² + 1) 

<=> -5.√(x² + 1) ≤ 4x + 3 ≤ 5.√(x² + 1) 

<=> -5/√(x² + 1) ≤ A = (4x + 3)/(x² + 1) ≤ 5/√(x² + 1) 
 

23 tháng 12 2017

mà anh ơi kết quả thầy em cho là -1 <=A<=4

AH
Akai Haruma
Giáo viên
8 tháng 11 2017

Lời giải:

ĐKXĐ: Với mọi số thực $x$

Ta có: \(A=\frac{x^2+4x+6}{x^2+2x+3}\Rightarrow A(x^2+2x+3)-(x^2+4x+6)=0\)

\(\Leftrightarrow x^2(A-1)+x(2A-4)+(3A-6)=0\)

+) Nếu \(A=1\Rightarrow x=\frac{-3}{2}\) (1)

+) Nếu \(A\neq 1\), pt trên là pt bậc 2

Vì PT luôn có nghiệm nên \(\Delta'=(A-2)^2-(3A-6)(A-1)\geq 0\)

\(\Leftrightarrow -2A^2+5A-2\geq 0\)

\(\Leftrightarrow \frac{1}{2}\leq A\leq 2\) (2)

Từ \((1);(2)\Rightarrow A_{\min}=\frac{1}{2}\Leftrightarrow x=-3; A_{\max}=2\Leftrightarrow x=0\)

9 tháng 11 2017

arigato Akai Haruma

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

3 tháng 4 2020

\(D=\frac{4x+3}{x^2+1}\)

Min D : 

\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)

\(=\frac{\left(x+2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Ta thấy : \(\frac{\left(x+2\right)^2}{x^2+1}\ge0\forall x\)

\(\Rightarrow D\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\)

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Max D : 

\(D=\frac{4x+3}{x^2+1}=\frac{-4x^2+4x-1+4x^2+4}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2+4\left(x^2+1\right)}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2}{x^2+1}+4\)

Ta thấy : \(\frac{-\left(2x-1\right)^2}{x^2+1}\le0\forall x\)

\(\Rightarrow D=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại