K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

1998 khi viết thành tổng của 3 số tự nhiên thì sẽ có 1 số chẵn 

tổng lập phương của chúng là số chẵn và chia hết cho 3

Do đó tổng các lập phương của 3 số tự nhiên chia hết cho 6

18 tháng 10 2015

1998 khi viết thành tổng của 3 số tự nhiên thì sẽ có 1 số chẵn

Tổng lập phương của chúng là số chãn chia hết 3

do đó tổng lập phương của 3 số tự nhiên chia hết cho 6

18 tháng 10 2015

1998 khi viết thành tổng 3 số tự nhiên thì sẽ có ít nhất 1 số chẵn

Tổng lập phương của chúng là số chẵn và chia hết cho 3

Do đó tổng các lập phương của ba số tự nhiên đó chia hết cho 6

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)

3 tháng 7 2020

\(2015^{2015}=2014.2015^{2014}+2015^{2014}\)

Trên là 1 cách viết

G/s: 2015^2015 có thể viết thành tổng k số tự nhiên bất kì: n1 + n2 +...+nk 

Xét \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\) tích của 3 số tự nhiên liên tiếp vừa chia hết cho 2 và vừa chia hết cho 3 

mà ( 2; 3) = 1; 2.3 = 6 

Do đó: \(n^3-n\) chia hết cho 6 

Khi đó:

 \(n_1^3-n_1⋮6\)

\(n_2^3-n_2⋮6\)

\(n_3^3-n_3⋮6\)

....

\(n_k^3-n_k⋮6\)

=> \(\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+...+\left(n_k^3-n_k\right)⋮6\)

=> \(\left(n_1^3+n_2^3+...+n_k^3\right)-\left(n_1+n_2+...+n_k\right)⋮6\)

=> \(\left(n_1^3+n_2^3+...+n_k^3\right);\left(n_1+n_2+...+n_k\right)\) có cùng số dư khi chia cho 6

Mặt khác: 

\(n_1+n_2+...+n_k=2015^{2015}\equiv\left(-1\right)^{2015}\equiv-1\equiv5\left(mod6\right)\)

=> 2015^2015 chia 6 dư 5

Hoặc có thể làm: 

\(n_1+n_2+...+n_k=2015^{2015}\)

vì 2015 chia 6 dư 5 ; 5^2 chia 6 dư 1 => 2015^2 chia 6 dư 1=> 2015^2014 chia 6 dư 1 => 2015^2015 chia 6 dư 5 

Vậy Tổng lập phương các số tự nhiên đó chia 6 dư 5