Tìm GTNN của biểu thức: \(M=x^2+5y^2-4xy+2x-8y+2018\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+5y^2-4xy+2x-8y+2021\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)
\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)
Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
a: \(A=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)
Dấu '=' xảy ra khi x=1 và y=-2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)
Dấu '=' xảy ra khi x=2 và y=4
Với a>0,b>0a>0,b>0 ta luôn có a+b≥2ab−−√a+b≥2ab
M = x2+y2xy=xy+yx=3xy+(x4y+yx)x2+y2xy=xy+yx=3xy+(x4y+yx)
Ta có: (x4y+yx)≥2x4y⋅yx−−−−−−√=1(x4y+yx)≥2x4y⋅yx=1
Mặt khác: x≥2yx≥2y ⇒3x4y≥32⇒3x4y≥32
Do đó M≥52M≥52 . Dâu ''='' xảy ra khi x=2yx=2y
Vậy giá trị nhỏ nhất của M là 5252 ⇔x=2y
(x-2y-2)2+(y-6)2 =39-2A
A=< 39/2, max A là 39/2 khi x =14 và y =6
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
a,<=> x2-4x+22+y2-8y+42-14
<=> (x2-2x2+22)+(y2-2x4+42)-14
<=> (x-2)2+(y-4)2-14
Vì (x-2)2+(y-4)2>= 0
=> F >= -14 => MIn F = -14 <=> x=2, y=4
b, <=> (x2+52+(2y)2-4xy+10x-20y) +(y2-2y+1)+2
<=> (x+5-2y )2+(y-1)2+2
Vì (x+5-2y) 2+(y-1)2 >= 0
=> G >= 2 => Min =2 <=> y=1, x= -3
\(F=x^2-4x+y^2-8y+6\)
\(F=\left(x^2-2.2x+2^2\right)+\left(y^2-2.4.y+4^2\right)-14\)
\(F=\left(x-2\right)^2+\left(y-4\right)^2-14\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\forall x\)
\(F=-14\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy \(F_{min}=-14\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
\(M=x^2+5y^2-4xy+2x-8y+2018\)
\(M=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-4y+4\right)+2013\)
\(M=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-2\right)^2+2013\)
\(M=\left(x-2y+1\right)^2+\left(y-2\right)^2+2013\ge2013\)
\(\Rightarrow MINM=2013\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)