Tìm nghiệm nguyên của PT
\(\sqrt{x+\dfrac{1}{2}\sqrt{x+\dfrac{1}{4}}}+x=y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Δ=(2m-2)^2-4(m-3)
=4m^2-8m+4-4m+12
=4m^2-12m+16
=4m^2-12m+9+7=(2m-3)^2+7>=7>0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
\(\left(\dfrac{1}{x1}-\dfrac{1}{x2}\right)^2=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}-\dfrac{2}{x_1x_2}=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{\left(\left(x_1+x_2\right)^2-2x_1x_2\right)}{\left(x_1\cdot x_2\right)^2}-\dfrac{2}{x_1\cdot x_2}=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{\left(2m-2\right)^2-2\left(m-3\right)}{\left(-m+3\right)^2}-\dfrac{2}{-m+3}=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{4m^2-8m+4-2m+6}{\left(m-3\right)^2}+\dfrac{2}{m-3}=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{4m^2-10m+10+2m-6}{\left(m-3\right)^2}=\dfrac{\sqrt{11}}{2}\)
=>\(\sqrt{11}\left(m-3\right)^2=2\left(4m^2-8m+4\right)\)
=>\(\sqrt{11}\left(m-3\right)^2=2\left(2m-2\right)^2\)
=>\(\Leftrightarrow\left(\dfrac{m-3}{2m-2}\right)^2=\dfrac{2}{\sqrt{11}}\)
=>\(\left[{}\begin{matrix}\dfrac{m-3}{2m-2}=\sqrt{\dfrac{2}{\sqrt{11}}}\\\dfrac{m-3}{2m-2}=-\sqrt{\dfrac{2}{\sqrt{11}}}\end{matrix}\right.\)
mà m nguyên
nên \(m\in\varnothing\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge2011\\y\ge2012\\z\ge2013\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-2011}\ge0\\b=\sqrt{y-2012}\ge0\\c=\sqrt{z-2013}\ge0\end{matrix}\right.\) ta có :
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}+\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}=0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow a=b=c=2\Leftrightarrow\left\{{}\begin{matrix}x=2015\\y=2016\\z=2017\end{matrix}\right.\)
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)
Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi x=0 (tm)
Vậy \(A_{max}=\dfrac{1}{2}\)
Bài 2:
Đk: \(x\ge3;y\ge5;z\ge4\)
Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)
Áp dụng AM-GM có:
\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)
\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)
\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)
Cộng vế với vế \(\Rightarrow VT\ge20\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)
Vậy...
I miss you Được em, hoặc trực tiếp nhóm thành HĐT, một vế là tổng các bình phương, vế còn lại bằng 0
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x-\dfrac{1}{x}\ge0\end{matrix}\right.\)
Pt\(\Rightarrow x^2-2x+1=2-x\sqrt{x-\dfrac{1}{x}}\)
\(\Rightarrow x^2-2x-1+x\sqrt{x-\dfrac{1}{x}}=0\)
\(\Rightarrow x-2-\dfrac{1}{x}+\sqrt{x-\dfrac{1}{x}}=0\)
Đặt \(\sqrt{x-\dfrac{1}{x}}=a\ge0\)
\(\Rightarrow a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow x-\dfrac{1}{x}=1\) (thỏa ĐKXĐ)
\(\Rightarrow x^2-x-1=0\)
\(\Rightarrow x=\dfrac{1\pm\sqrt{5}}{2}\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-1}{x-4}\right):\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{1}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)
Để P nguyên thì \(\sqrt{x}-2\in\left\{-1;1\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3\right\}\)
hay \(x\in\left\{1;9\right\}\)
2)
\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)
\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)
1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)
Ta có: \(x^2+2y^2=9\)
\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)
\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)
\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)
\(\Leftrightarrow123m^2+206m-45=0\)
Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi
a) \(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\) (ĐK: \(x\ne4,x\ge0\))
\(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{4-x}\)
\(Q=\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2+\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}-\dfrac{2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(Q=\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(Q=\dfrac{6-3\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(Q=\dfrac{3\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(Q=\dfrac{3}{2+\sqrt{x}}\)
b) \(Q=\dfrac{6}{5}\) khi:
\(\dfrac{3}{2+\sqrt{x}}=\dfrac{6}{5}\)
\(\Leftrightarrow15=12+6\sqrt{x}\)
\(\Leftrightarrow6\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
Vì x là số nguyên
\(\Rightarrow x+\dfrac{1}{4}\)không phải số nguyên
\(\Rightarrow\sqrt{x+\dfrac{1}{4}}\)không phải số nguyên
\(\Rightarrow\sqrt{x+\dfrac{1}{2}\sqrt{x+\dfrac{1}{4}}}\)không phải số nguyên
Mà \(y-x\)là số nguyên
Vậy pt vô nghiệm nguyên