Cho: a.b.c = 1. Tính: \(S=\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ac}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(s=\frac{bc}{bc\left(1+a+ab\right)}+\frac{1}{1+b+bc}+\frac{b}{b\left(1+c+ac\right)}=>\) \(s=\frac{bc}{bc+abc+ab^2c}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}\)=>
\(s=\frac{bc}{1+b+bc}+\frac{1}{1+b+bc}+\frac{b}{1+b+bc}\)=>
\(s=\frac{1+b+bc}{1+b+bc}=1\)Vậy với a.b.c=1 S=1
\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{b}{\dfrac{b}{ab}+b+1}+\dfrac{\dfrac{1}{ab}}{\dfrac{a}{ab}+\dfrac{1}{ab}+1}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ba+a}+\dfrac{1}{a+1+ab}=\dfrac{ab+a+1}{ab+a+1}=1\)
Bài toán cơ bản:
\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Bunhiacopxki:
\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{1}{b+1+bc}+\dfrac{1}{c+1+ac}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac}{abc+ac+abc.c}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac}{1+ac+c}+\dfrac{1}{ac+c+c}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac+1+c}{ac+c+1}=1\) (đpcm)
Ta có :
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{abc}{aabc+abc+ab}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{1}{a+1+ab}\)
\(A=\dfrac{a+ab+1}{ab+a+1}\)
\(\Rightarrow A=1\left(đpcm\right)\)
\(B=\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}=\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+abc}+\dfrac{ab}{ab+abc+abca}\)
vì abc =1 nên B=\(\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+1}+\dfrac{ab}{ab+1+a}=\dfrac{1+a+ab}{a+1+ab}=1\)
chúc bạn học tót ^^
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab\left(1+ac+c\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{ac+1+c}{ac+c+1}\)
\(A=1\)
\(A=\dfrac{ab}{ab+a+1}+\dfrac{bc}{bc+b+1}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{abc}{abc+ac+c}+\dfrac{bc}{bc+b+abc}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{1}{1+ac+c}+\dfrac{c}{c+1+ac}+\dfrac{ca}{ca+c+1}\)
\(A=1\)
Lời giải:
Ta có:
\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)
\(S=\frac{c}{1.c+ac+abc}+\frac{ac}{ac+b.ac+bc.ac}+\frac{1}{1+c+ac}\)
Thay \(abc=1\) ta có:
\(S=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)
\(S=\frac{a+ac+1}{c+ac+1}=1\)