Cho \(\widehat{mOn}\) kề bù với \(\widehat{nOa}\) . Biết \(\widehat{mOn}\) = 60o
a, Tính \(\widehat{nOa}\) .
b, Vẽ Ot là tia phân giác của \(\widehat{mOn}\) và Ok là tia phân giác của \(\widehat{nOa}\) . Tính \(\widehat{tOk}\) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\widehat{xOy}\) và \(\widehat{yOz}\) là 2 góc kề bù (theo đề)
\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^0\)
Hay \(50^0+\widehat{yOz}=180^0\)
\(\Rightarrow\widehat{yOz}=130^0\)
b) Góc mOn ..... bn tự lm ik
Ta có: Om là tia phân giác của \(\widehat{xOy}\) (theo đề)
\(\Rightarrow\)\(\widehat{xOm}=\widehat{yOm}=\frac{\widehat{xOy}}{2}=\frac{50^0}{2}=25^0\)
Lại có : On là tia phân giác của \(\widehat{yOz}\) (theo đề)
\(\Rightarrow\)\(\widehat{yOn}=\widehat{zOn}=\frac{\widehat{yOz}}{2}=\frac{130^0}{2}=65^0\)
Ta lại có: \(\widehat{mOy} + \widehat{nOy} = 25^0 + 65^0 = 90^0\)
Do đó 2 góc mOy và nOy phụ nhau.
Cái này mình bt làm nek
Vì Om là tia phân giác của\(\widehat{xOy}\)
\(\Rightarrow\widehat{xOm}=\widehat{mOy}=\frac{\widehat{xoy}}{2}\)
Vì On là tia phân giác của \(\widehat{yOz}\)
\(\Rightarrow\widehat{zOn}=\widehat{yOn}=\frac{\widehat{yOz}}{2}\)
Vì Oy nằm giữa On và Om
Nên\(\widehat{mOy}+\widehat{nOy}=\widehat{mOn}=\frac{\widehat{xOz}}{2}\)
Hay\(\frac{\widehat{xOy}}{2}+\frac{\widehat{yOz}}{2}=\frac{\widehat{xOz}}{2}\)
\(\Rightarrow\widehat{mOn}=\frac{180^o}{2}=90^o\)
vì góc xOy và yOz là 2 góc kề bù
\(\Rightarrow xoy+yoz=180\)
tia om là tiaphaan giác của góc xoy
\(\Rightarrow moy=mox=xoy:2\)
tia on là tia phân giác của góc yoz
\(\Rightarrow noy=noz=yoz:2\)
\(\downarrow\)
noy:2+moy:2=180
a: \(\widehat{nOa}=180^0-60^0=120^0\)
b: \(\widehat{tOk}=\widehat{tOn}+\widehat{kOn}=\dfrac{60^0}{2}+\dfrac{120^0}{2}=90^0\)