với mỗi số nguyên dương n ta kí hiệu \(a_n\) là số nguyên gần \(\sqrt{n}\) nhất
tính giá trị của tổng: \(S=\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{2017}}+\dfrac{1}{a_{2018}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất của dãy tỉ số bằng nha, ta có :
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)
\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)
\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)
.................................
\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)
\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)
Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)
~ Học tốt ~
TK: Câu hỏi của Lãnh Hạ Thiên Băng - Toán lớp 6 - Học trực tuyến OLM
Ta có ;
\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{\left(a1\right)^{2017}}{\left(a2\right)^{2017}}\\ =\dfrac{a1\cdot a2\cdot a3\cdot...\cdot a2017}{a2\cdot a3\cdot a4\cdot...\cdot a2018}=\dfrac{a1}{a2018}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{a1+a2+a3+...+a2017}{a2+a3+a4+...+a2018}\left(2\right)\)
Từ (1) và (2) ⇒ Đpcm
44^2 =1936
45^2 =2025
phần thừa dư do 2018 không cp : 2018-[1936+(2025-1936-1 )/2] = 38 số
\(S=\dfrac{2}{1}+\dfrac{4}{2}+\dfrac{6}{3}+...+\dfrac{88}{44}+\dfrac{38}{45}=2.44+\dfrac{38}{45}\)