chứng minh các bất đẳng thức sau:
a) 4x^2+4x+5 >0
b) x^2-x+1 >0
c) a^2+ab+b^2 >= 0
:-) giải từng bước một ra giúp mình nhé..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi bạn làm sai rùi vs lại bạn xem lại đề đi tại vì pt trên nếu giải ra sẽ có hai nghiệp là x=1, x=0 nha bạn
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
Day la bdt Svacso dau bang xay ra <=> \(\frac{a}{x}=\frac{b}{y}\)
Quy đồng full
\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge\left(a^2+2ab+b^2\right)xy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)
lun đúng
Áp dụng BĐT cô si cho 2 số ko âm \(\sqrt{a}\) và \(\sqrt{b}\) ta được:
\(\sqrt{a}+\sqrt{b}\ge2\sqrt{\sqrt{ab}}\)
Suy ta: \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{ab}}}=\sqrt{\sqrt{ab}}=\sqrt[4]{ab}\)
=>điều cần chứng minh
a)
\(4x^2+4x+5>0\)
\(\Leftrightarrow4x^2+4x+4+1>0\)
\(\Leftrightarrow\left(2x+2\right)^2+1>0\) ( luôn đúng)
b)
\(x^2-x+1>0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}>0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ( luôn đúng)
câu a sai nha Nhã Doanh cẩn thận tí đi