K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

ABCHKE

a) Xét \(\Delta ABE\)\(\Delta KBE\) , có :

BE : chung

\(\widehat{ABE}\) = \(\widehat{KBE}\) ( gt )

\(\widehat{BA\text{E}}\) = \(\widehat{BKE}\) ( = 90o )

=> tam giác ABE = tam giác KBE ( ch - gn )

Vậy tam giác ABE = tam giác KBE ( ch - gn )

b) Ta có : góc BAE + góc EAH = 180o ( kề bù ) mà góc BAE = 90o nên góc EAH = 90o

Xét tam giác EAH và tam giác EKC , có :

góc EAH = góc EKC ( = 90o )

góc AEH = góc KEC ( đối đỉnh )

EA = EK ( tam giác ABE = tam giác KBE )

=> tam giác EAH = tam giác EKC ( cgv - gnk )

=> AH = KC ( hai cạnh tương ứng )

Vậy AH = KC

\(\Delta ABE\)

18 tháng 3 2018

ABCHKE

a) Xét \(\Delta ABE\)\(\Delta KBE\) , có :

BE : chung

\(\widehat{ABE}\) = \(\widehat{KBE}\) ( gt )

\(\widehat{BA\text{E}}\) = \(\widehat{BKE}\) ( = 90o )

=> tam giác ABE = tam giác KBE ( ch - gn )

Vậy tam giác ABE = tam giác KBE ( ch - gn )

b) Ta có : góc BAE + góc EAH = 180o ( kề bù ) mà góc BAE = 90o nên góc EAH = 90o

Xét tam giác EAH và tam giác EKC , có :

góc EAH = góc EKC ( = 90o )

góc AEH = góc KEC ( đối đỉnh )

EA = EK ( tam giác ABE = tam giác KBE )

=> tam giác EAH = tam giác EKC ( cgv - gnk )

=> AH = KC ( hai cạnh tương ứng )

Vậy AH = KC

7 tháng 5 2016

mk làm đc phần a vs b nhưng phần c mk ko làm đc 

27 tháng 4 2021

Bạn tự trình bày theo các ý sau nhé, mình k có nhiều tgian nên tb ngắn gọn chút
a) Xét tam giác vuông ABE và tam giác vuông KBE
có; b1 = b2 do phân giác đề bài cho, BE cạnh chung, hai góc vuông của hai tam giác trên
=> bằng nhau theo th cạnh huyền gn => AE=KE
b) Xét hai tam giác trên có: AE= KE (gt), e1=e2(đối đỉnh) hai góc vuông của hai tam giác bằng nhau = 90
=> hai tam giác bằng nhau theo th cạnh góc vuông- góc nhọn kề
c) ta có: AE= KE(cmt) (1)
              Ah=KC(câu b) (2)

áp dụng bất đẳng thức vào tam giác KCH:
kh+kc>hc hay ke+eh+hc>hc(3)

từ 1 2 3 => AE +HE+AH> HC 
bạn ti c k cho mình nha

27 tháng 4 2021

thk you very much như đã hứa nha!!!

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

\(\widehat{ABE}=\widehat{DBE}\)

Do đó: ΔBAE=ΔBDE

b: ta có: ΔBAE=ΔBDE

nên BA=BD và EA=ED
=>BE là đường trung trực của AD

hay BE\(\perp\)AD

a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔABE=ΔKBE

b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K có

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)

Do đó: ΔAEM=ΔKEC

Suy ra: EM=EC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

13 tháng 3 2022

Bạn có thể vẽ hình giúp mình dc ko

 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

\(\widehat{ABE}=\widehat{DBE}\)

Do đó: ΔBAE=ΔBDE

Suy ra: BA=BD; EA=ED

c: Xét ΔAEK vuông tại A và ΔDEC vuông tại D có

EA=ED

\(\widehat{AEK}=\widehat{DEC}\)

Do đó:ΔAEK=ΔDEC

Suy ra: EK=EC

14 tháng 7 2021

undefined

a) Xét hai tam giác vuông ΔABE và ΔHBE có:

ABE = HBE (BE là tia phân giác giả thiết)

BE cạnh chung

⇒ ΔABE = ΔHBE (cạnh huyền - góc nhọn)

Vậy ΔABE = ΔHBE

b) AB = HB (2 cạnh tương ứng)

⇒ B thuộc đường trung trực của đoạn AH (1)

AE=HE (2 cạnh tương ứng)

⇒ E thuộc đường trung trực của đoạn AH (2)

Từ (1) và (2) ⇒ BE là đường trung trực của đoạn AH

Vậy BE là đường trung trực của đoạn AH

c) Xét hai tam giác vuông ΔAEK và ΔHEC có:

AEK = HEC (đối đỉnh)

AE = HE (cmt)

⇒ ΔAEK = ΔHEC (cạnh góc vuông - góc nhọn)

⇒ EK = EC (2 cạnh tương ứng) (3)

Vậy EK = EC

d) Ta có: ΔAEK vuông tại A

⇒ K<A

⇒ AE<KE (4)

Từ (3) và (4) ⇒ AE<EC

Vậy AE<EC

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(Cạnh huyền-góc nhọn)

b) Ta có: ΔABE=ΔHBE(cmt)

nên BA=BH(Hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của AH