1)Cho △ABC vuông tại A. Đường phân giác BE. Kẻ EH ⊥ BC. Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a)△ABE = △HBE
b)EK = EC
c)So sánh BC với KH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
Hình tự vẽ
a)Xét hai tam giác vuông ABE và HBE CÓ:
AE-chung
góc ABE=góc HBE(gt)
=>tam giác ABE=tam giác HBE(ch-gn)
b)Có tam giác ABE=tam giác HBE(cmt)
=>AB=BH
=>Tam giác BHA cân tại B
mà BE là p/g của góc ABH
=>BE là đường cao, đường trung tuyến
=>BE\(\perp\) AH
c)Xét tam giác AEK và tam giác HEC CÓ
góc KAE=góc EHC=900
AE=EH
góc AEK=góc HEC
=>tam giác AEK= tam giác HEC(c.g.c)
=>EK=EC
d)Xét tam giác EHC có góc EHC=900
=> EC là cạnh lớn nhất
=>EC>EH
Mà EH=AE
=>EC>AE
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng
1) Tam giác ABE=tam giác HBE
2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC
3) AE<EC
a) Xét tam giác ABE vuông tại A và ta giác HBE vuông tại H
có: BE là cạnh chung
góc ABE = góc HBE (gt)
\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)
b) ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)
=> AE = HE ( 2 cạnh tương ứng)
Xét tam giác AEM vuông tại A và tam giác HEC vuông tại H
có: AE = HE ( cmt)
góc AEM = góc HEC ( đối đỉnh)
\(\Rightarrow\Delta AEM=\Delta HEC\left(cgv-gn\right)\)
=> EM = EC ( 2 cạnh tương ứng)
c) Gọi BE cắt CM tại K
ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)
=> AB = HB ( 2 cạnh tương ứng) (1)
ta có: \(\Delta AEM=\Delta HEC\) ( chứng minh phần b)
=> AM = HC ( 2 cạnh tương ứng) (2)
Từ (1);(2) => AB + AM = HB + HC
=> BM = BC (*)
Xét tam giác BMH vuông tại H
có: BM > MH ( quan hệ cạnh huyền, cạnh góc vuông) (**)
Từ (*), (**) => BC>MH
mk ko bít kẻ hình trên này, sorry bn nha!
a) xét tam giác ABE vuông tại A và tam giác HBE vuông tại H có
gócABE = gócHBE ( BE là phân giác gócABH)
BE chung
\(=>\)tam giác vuông ABE = tam giác vuông HBE ( cạnh huyền góc nhọn )
\(=>\)AE=EH ( 2 cạnh tương ứng)
b) xét tam giác AKE vuông tại A và tam giác HCE vuông tại H có
AE=EH ( theo câu a)
góc AEK = HEC ( 2 góc đối đỉnh )
\(=>\)tam giác vuông AKE = tam giác vuông HCE ( cạnh góc vuông - góc nhọn kề cạnh ấy)
\(=>\)EK=EC ( 2 cạnh tương ứng )
a, xét 2 tam giác vuông ABE và HBE có:
BE cạnh chung
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
=> tam giác ABE =tam giác HBE(CH-GN)
b) gọi O là giao điểm của BE và AH
xét tam giác OAB và tam giác OHB có:
OB chung
\(\widehat{OBA}\)=\(\widehat{OBH}\)(gt)
AB=HB(theo câu a)
=> tam giác OAB=tam giác OHB(c.g.c)
=> OA=OH=> O là trung điểm của AH(1)
\(\widehat{AOB=\widehat{HOB}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{HOB}}\)=90 độ => BO\(\perp\)AH(2)
từ (1) và (2) => BE là trung trực của AH
c)xét 2 tam giác vuông EAK và HEC có:
AE=EH
\(\widehat{AEK=\widehat{HEC}}\)(đối đỉnh)
=> tam giác EAK=tam giác HEC(cạnh góc vuông-góc nhọn)
=> EK=EC
d) trong tam giác vuông AEK có: AE<EK(vì cạnh huyền>cạnh góc vuông) mà EK=EC=> AE<EC
Em đăng câu hỏi này sang mục hỏi - đáp môn Toán nhé!
a) Xét tam giác ABE và tam giác HBE , có :
BE : chung
góc ABE = góc HBE ( gt )
góc BAE = góc BHE ( = 90o )
=> tam giác ABE = tam giác HBE ( ch - gn )
Vậy tam giác ABE = tam giác HBE ( ch - gn )
b) Ta có : góc BAE + góc EAK = 180o ( kề bù ) mà góc BAE = 90o => góc EAK = 90o
Xét tam giác EAK và tam giác EHC , có :
góc AEK = góc HEC ( đối đỉnh )
góc EAK = góc EHC ( = 90o )
EA = EH ( tam giác ABE = tam giác HBE )
=> tam giác EAK = tam giác EHC ( cgv - gnk )
=> EK = EC ( hai cạnh tương ứng )
Vậy EK = EC
c) Ta có : BA + AK = BK ; BH + HC = BC mà BA = BH ( tam giác ABE = tam giác HBE ) ; AK = HC ( tam giác EAK = tam giác EHC ) => BK = BC
Xét tam giác BHK vuông tại H => BK > KH ( quan hệ giữa đường vuông góc và cạnh đối diện ) mà BK = BC ( chứng min trên ) => BC > KH ( đpcm )
Vậy BC > KH