tính gần đúng giá trị biểu thức \(\dfrac{1}{3}\)-\(\dfrac{1}{7}\)
nhanh nhé !
thanks !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=1-1/2+1/2^2-...+1/2^98-1/2^99
=>3A=1-1/2^100
=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)
\(U_n=\dfrac{\left(n^2-1\right)}{n\left(n+2\right)}U_{n-1}\Rightarrow n\left(n+2\right).U_n=\left(n-1\right)\left(n+1\right).U_{n-1}\)
Đặt \(n\left(n+2\right).U_n=V_n\Rightarrow V_{n-1}=\left(n-1\right)\left(n+2-1\right).U_{n-1}=\left(n-1\right).\left(n+1\right)U_{n-1}\)
\(\Rightarrow V_n=V_{n-1}\)
\(\Rightarrow V_n=V_{n-1}=V_{n-2}=...=V_1\)
Có \(V_1=1.\left(1+2\right).U_1=1\)
\(\Rightarrow V_n=1\)
\(\Rightarrow U_n=\dfrac{V_n}{n\left(n+2\right)}=\dfrac{1}{n\left(n+2\right)}\)
\(\Rightarrow A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)
\(=...\)
\(E=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{2}+\dfrac{1}{12}\)
\(E=\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{24}\right)\)
\(E=\dfrac{2}{2}+\dfrac{3}{6}+\left(\dfrac{1}{8}+\dfrac{3}{24}\right)\)
\(E=1+\dfrac{1}{2}+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)\)
\(E=\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\dfrac{2}{8}\)
\(E=\dfrac{3}{2}+\dfrac{1}{4}\)
\(E=\dfrac{6}{4}+\dfrac{1}{4}\)
\(E=\dfrac{7}{4}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\times\dfrac{7}{24}\times\dfrac{12}{7}=\dfrac{3}{4}-\dfrac{5}{12}=\dfrac{1}{3}\)
\(\dfrac{3}{4}-\dfrac{5}{6}\left(\dfrac{1}{6}+\dfrac{1}{8}\right):\dfrac{7}{12}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\cdot\dfrac{7}{24}\cdot\dfrac{12}{7}\)
\(=\dfrac{3}{4}-\dfrac{5}{12}\)
\(=\dfrac{4}{12}=\dfrac{1}{3}\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}.\dfrac{2}{7}+\dfrac{1}{7}.\dfrac{5}{7}.\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}\left(\dfrac{2}{7}+\dfrac{5}{7}\right).\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}.1.\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}=1.\)
Vậy \(A=1.\)
\(B=\dfrac{40}{9}.\dfrac{13}{3}-\dfrac{4}{3}.\dfrac{40}{9}.\)
\(B=\dfrac{4}{9}.\dfrac{13}{3}-\dfrac{4}{9}.\dfrac{40}{3}.\)
\(B=\dfrac{4}{9}\left(\dfrac{13}{3}-\dfrac{40}{3}\right).\)
\(B=\dfrac{4}{9}.\left(-9\right).\)
\(B=-4.\)
Vậy \(B=-4.\)
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{17}+\dfrac{1}{11}\right)}=\dfrac{3}{13}\)
\(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{11}}{\dfrac{13}{4}-\dfrac{13}{5}+\dfrac{13}{7}+\dfrac{13}{11}}\)
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}\)
\(=\dfrac{3}{13}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}.\dfrac{12}{7}\)
\(=\dfrac{2}{3}+\dfrac{7.3.2.2}{3.7.3.2.3}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{8}{9}\)
TICK CHO MÌNH NHÉ
Giải:
\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\) . (\(-\dfrac{4}{9}\) + \(\dfrac{5}{6}\) ) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(^{\dfrac{1}{3}}\) . \(\dfrac{7}{18}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{7}{54}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{2}{9}\)
= \(\dfrac{8}{9}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{7}{18}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
tính gần đúng???
là sao hả bn???
là phải làm tròn số thập phân