Chứng minh rằng :
a) \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}=\dfrac{1}{101}\)+ \(\dfrac{1}{102}+...+\dfrac{1}{200}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Lại có:
\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{100}{101}\)
Vậy ...
Những dãy trên đều có 100 số hạng.
Ta có:
\(\dfrac{1}{101}>\dfrac{1}{150}\)
\(\dfrac{1}{102}>\dfrac{1}{150}\)
....
\(\dfrac{1}{150}=\dfrac{1}{150}\)
=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 số)=\(\dfrac{1}{3}\)
Ta có:
\(\dfrac{1}{152}>\dfrac{1}{200}\)
\(\dfrac{1}{153}>\dfrac{1}{200}\)
....
\(\dfrac{1}{200}=\dfrac{1}{200}\)
=>\(\dfrac{1}{151}+\dfrac{1}{153}+...+\dfrac{1}{120}>\dfrac{1}{120}+\dfrac{1}{120}+...+\dfrac{1}{120}\)(50 số)=\(\dfrac{1}{4}\)
=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}\)
=> \(A>\dfrac{7}{12}\)
+)Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)
\(A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...+\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+...+\dfrac{1}{200}\right)\)\(A>\dfrac{1}{125}.25+\dfrac{1}{150}.25+\dfrac{1}{175}.25+\dfrac{1}{200}.25=\dfrac{533}{840}>\dfrac{5}{8}\)
+)\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)
\(A=\left(\dfrac{1}{101}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...+\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...+\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...+\dfrac{1}{200}\right)\)\(A< \dfrac{1}{100}.20+\dfrac{1}{120}.20+\dfrac{1}{140}.20+\dfrac{1}{160}.20+\dfrac{1}{180}.20=\dfrac{1879}{2520}< \dfrac{3}{4}\)
Ta có: \(\dfrac{1}{101}>\dfrac{1}{200}\)
Tương tự ta có: \(\dfrac{1}{102}>\dfrac{1}{200}\) ;....; \(\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{200}.100\)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{100}{200}\)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{2}\left(đpcm\right)\)
Ta có:
\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\) (có 50 số hạng)
⇔ \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{3}\) \(\left(1\right)\)
\(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\) (có 50 số hạng)
⇔ \(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{4}\) \(\left(2\right)\)
Từ (1) và (2), cộng vế theo vế. Ta được:
\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}+\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
⇒ \(ĐPCM\)
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)
Ta có: \(C=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+\dfrac{1}{122}+\dfrac{1}{123}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+\dfrac{1}{182}+\dfrac{1}{183}+...+\dfrac{1}{200}\right)\)
\(\Leftrightarrow C>20\cdot\dfrac{1}{120}+30\cdot\dfrac{1}{150}+30\cdot\dfrac{1}{180}+20\cdot\dfrac{1}{200}\)
\(\Leftrightarrow C>\dfrac{1}{6}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{10}=\dfrac{19}{30}=\dfrac{76}{120}\)
\(\Leftrightarrow C>\dfrac{75}{120}=\dfrac{5}{8}\)
hay \(C>\dfrac{5}{8}\)(đpcm)
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)
Mình nhờ cô giảng bài này rồi nên cũng biết làm.Nhưng mình cũng like để cảm ơn bạn.