\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+4}{2015}+\dfrac{x+3}{2016}=\dfrac{x+2}{2017}+\dfrac{x+1}{2018}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2015}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+1}{2018}+1\right)\)
\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}=\dfrac{x+2019}{2017}+\dfrac{x+2019}{2018}\)
\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}-\dfrac{x+2019}{2017}-\dfrac{x+2019}{2018}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)
Mà \(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)
\(\Leftrightarrow x+2019=0\)
\(\Leftrightarrow x=-2019\)
Vậy...
\(\dfrac{x-2}{2018}=\dfrac{x-3}{2017}=\dfrac{x-4}{2016}=\dfrac{x-5}{2015}\)
\(\dfrac{x-2}{2018}+\dfrac{x-3}{2017}=\dfrac{x-4}{2016}+\dfrac{x-5}{2015}\)
\(\left(\dfrac{x-2}{2018}-1\right)+\left(\dfrac{x-3}{2017}-1\right)=\left(\dfrac{x-4}{2016}-1\right)+\left(\dfrac{x-5}{2015}-1\right)\)
\(\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}=\dfrac{x-2020}{2016}+\dfrac{x-2020}{2015}\)
\(\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}-\dfrac{x-2020}{2016}-\dfrac{x-2020}{2015}=0\)
\(\left(x-2020\right)\left(\dfrac{1}{2018}+\dfrac{1}{2017}-\dfrac{1}{2016}-\dfrac{1}{2015}\right)=0\)
\(\dfrac{1}{2018};\dfrac{1}{2017};\dfrac{1}{2016};\dfrac{1}{2015}>0\)
Nên \(x-2020=0\)
\(x=0+2020\)
\(x=2020\)
Vậy x bằng 2020
Ta có:
\(\dfrac{x}{2014}+\dfrac{x+1}{2015}+\dfrac{x+2}{2016}+\dfrac{x+3}{2017}+\dfrac{x+4}{2018}=5\)
\(\Leftrightarrow\left(\dfrac{x}{2014}-1\right)+\left(\dfrac{x+1}{2015}-1\right)+\left(\dfrac{x+2}{2016}-1\right)+\left(\dfrac{x+3}{2017}-1\right)+\left(\dfrac{x+4}{2018}-1\right)=0\)\(\Leftrightarrow\dfrac{x-2014}{2014}+\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}+\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}=0\)\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)=0\) (1)
Mà \(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}>0\) (2)
Từ (1) và (2) => \(x-2014=0\) \(\Leftrightarrow x=2014\)
\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)
\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)
\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)
\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)
Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)
Giải:
\(\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)
\(\Leftrightarrow2+\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=2+\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)
\(\Leftrightarrow\dfrac{x+2015}{5}+1+\dfrac{x+2016}{4}+1=\dfrac{x+2017}{3}+1+\dfrac{x+2018}{2}+1\)
\(\Leftrightarrow\dfrac{x+2015+5}{5}+\dfrac{x+2016+4}{4}=\dfrac{x+2017+3}{3}+\dfrac{x+2018+2}{2}\)
\(\Leftrightarrow\dfrac{x+2020}{5}+\dfrac{x+2020}{4}=\dfrac{x+2020}{3}+\dfrac{x+2020}{2}\)
\(\Leftrightarrow\dfrac{x+2020}{5}+\dfrac{x+2020}{4}-\dfrac{x+2020}{3}-\dfrac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy ...
\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+3}{2017}+1\right)+\left(\dfrac{x+4}{2016}+1\right)\)
\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{2017}-\dfrac{x+2020}{2016}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x=-2020\)(do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\ne0\))
Đặt \(a=\sqrt{x-2015};b=\sqrt{y-2016};c=\sqrt{z-2017}\left(a,b,c>0\right)\)
Khi đó phương trình trở thành:
\(\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\\ \Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{a}+\dfrac{1}{a^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{b}+\dfrac{1}{b^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{c}+\dfrac{1}{c^2}\right)=0\\ \Leftrightarrow\left(\dfrac{1}{2}-\dfrac{1}{a}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)^2=0\\ \Leftrightarrow a=b=c=2\\ \Leftrightarrow x=2019;y=2020;z=2021\)
Tick plz
\(\Leftrightarrow\left(\dfrac{x+4}{2015}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+1}{2018}+1\right)\)
=>x+2019=0
=>x=-2019
\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}+1=\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}+1\)
\(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
\(\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ x+2018=0\\ x=-2018\)
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)
<=>\(\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{2017}-1+\dfrac{x+4}{2018}-1\)
<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)
<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)
<=>\(\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)
vì 1/2015+1/2016-1/2017-1/2018 khác 0
=>x-2014=0<=>x=2014
vậy.....................
chúc bạn học totts ^^
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)
\(\Leftrightarrow\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{x017}-1+\dfrac{x+4}{2018}-1\)
\(\Leftrightarrow\dfrac{x+1-2015}{2015}+\dfrac{x+2-2016}{2016}=\dfrac{x+3-2017}{2017}+\dfrac{x+4-2018}{2018}\)\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)
\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)
Vì: \(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)
\(\Rightarrow x-2014=0\)
\(\Rightarrow x=2014\)
Vậy........