Cho hệ phương trình: \(\left\{{}\begin{matrix}\left(a+1\right)x+y=4\\ax+y=2a\end{matrix}\right.\)( a là tham số)
1. Giải hệ khi a=1 ( ko cần làm đâu nhé)
2. Chứng minh rằng với mọi giá trị của a, hệ luôn có nghiệm duy nhất ( x; y) sao cho x+y \(\geq \) 2
Lời giải:
Câu 2:
Ta có: \(\left\{\begin{matrix} (a+1)x+y=4(1)\\ ax+y=2a(2)\end{matrix}\right.\)
Lấy \((1)-(2)\Rightarrow x=4-2a\)
\(\Rightarrow y=2a-ax=2a-a(4-2a)=2a^2-2a\)
Ta thấy ứng với mỗi giá trị của $a$ ta thu được một giá trị tương ứng duy nhất của \((x,y)=(4-2a, 2a^2-2a)\)
nên hệ luôn có nghiệm duy nhất.
Có: \(x+y=4-2a+2a^2-2a=2a^2-4a+4=2(a-1)^2+2\)
Ta thấy \((a-1)^2\geq 0\forall a\in\mathbb{R}\Rightarrow x+y=2(a-1)^2+2\geq 2\)
Ta có đpcm.