1. CM:BA là phân giác của góc OBH
2.CM: phân giác ngoài của góc OBH đi qua 1điểm cố định khi B di động
3. gọi M là giao điểm của BH với phân giác của góc AOB tìm quỹ tích M Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) BH // OA và cùng vuông góc với xy
Tam giác AOB cân tại O vì OA = OB = bán kính của (O)
Góc HBA = góc BAO ( so le trong)
góc BAO = ABO ( vì tam giác AOB cân tại O)
Suy ra HBA = ABO hay BA là phân giác góc HBO
2) Phân giác ngoài của HBO là đường thẳng vuông góc với phân giác trong BA ---------(1)
Gọi A' là giao điểm thứ hai của OA với (O)
vì AA' là đường kính nên BA' vuông góc với BA------(2)
Từ (1) và (2) suy ra phân giác ngoài của HBO qua A" cố định
3) MO vuông góc với AB ( vì tam giác AOB cân tại O)
Trong tam giác MBO có BA là phân giác cũng là đường cao
Suy ra BM = BO
BO = BA
suy ra BM = OA
Suy ra AOBM là hình bình hành ( vì BM// = OA)
Mà OB = OA nên AOBM là hình thoi
Vậy AM = AO
Hay M thuộc đường tròn tâm A bán kính OA
1. Để chứng minh cung DE có số đo không đổi, ta cần chứng minh góc \(\angle BOC\) có số đo không đổi. Thực vậy, theo tính chất hai tiếp tuyến cắt nhau, OB và OC là phân giác ngoài của tam giác ABC. Ta có
\(\angle BOC=180^{\circ}-\frac{\angle MBC}{2}-\frac{\angle NCB}{2}=\frac{\angle ABC}{2}+\frac{\angle ACB}{2}=90^{\circ}-\frac{\angle BAC}{2}=90^{\circ}-\frac{a}{2}\)
Do đó góc \(\angle BOC\) có số đo không đổi. Suy ra cung DE có số đo không đổi.
2. Do CD vuông góc với AB nên BC,BD là đường kính của hai đường tròn (O) và (O'). Suy ra
\(\angle CFB=\angle DEB=90^{\circ}\to\angle CFD=\angle CED=90^{\circ}.\) Vậy tứ giác CDEF nội tiếp. Do đó \(\angle ECF=\angle EDF\to\angle FAB=\angle ECF=\angle EDF=\angle EDB\)
Vậy AB là phân giác của góc AEF.
3. Đề bài có chút nhầm lẫn, "kẻ \(IH\perp BC\) mới đúng. Do tam giác ABC nhọn và I nằm trong nên các điểm H,K,L nằm trên các cạnh của tam giác. Sử dụng bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2,\) ta suy ra \(AL^2+BL^2\ge\frac{1}{2}\left(AL+BL\right)^2=\frac{1}{2}AB^2.\) Tương tự ta cũng có \(BH^2+CH^2\ge\frac{1}{2}BC^2,KC^2+KA^2\ge\frac{1}{2}AC^2.\) Mặt khác theo định lý Pitago
\(AL^2+BH^2+CK^2=\left(IA^2-IL^2\right)+\left(IB^2-IH^2\right)+\left(IC^2-IK^2\right)\)
\(=\left(IA^2-IK^2\right)+\left(IB^2-IL^2\right)+\left(IC^2-IH^2\right)\)
\(=BL^2+CH^2+AK^2.\)
Thành thử \(AL^2+BH^2+CK^2=\frac{\left(AL^2+BL^2\right)+\left(BH^2+CH^2\right)+\left(CK^2+AK^2\right)}{2}\ge\frac{AB^2+BC^2+CA^2}{2}.\)
Dấu bằng xảy ra khi \(AL=BL,BH=CH,CK=AK\Leftrightarrow I\) là giao điểm ba đường trung trực.