Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ quả của định lí Ta – lét cho OE//DC,
OF//DC và AB//DC ta được:
Điều phải chứng minh.
Áp dụng hệ quả của định lí Ta – lét cho OE//DC,
OF//DC và AB//DC ta được:
Điều phải chứng minh.
Sửa đề: lần lượt cắt AD,BC tại E và H
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AE}{AD}\left(1\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BH}{BC}\left(2\right)\)
Xét hình thang ABCD có EH//AB//CD
nên \(\dfrac{AE}{ED}=\dfrac{BH}{HC}\)
=>\(\dfrac{ED}{EA}=\dfrac{CH}{HB}\)
=>\(\dfrac{ED+EA}{EA}=\dfrac{CH+HB}{HB}\)
=>\(\dfrac{AD}{EA}=\dfrac{CB}{HB}\)
=>\(\dfrac{AE}{AD}=\dfrac{BH}{BC}\left(3\right)\)
Từ (1),(2),(3) suy ra OE=OH
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB\(\sim\)ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)
b: Xét ΔCAD có OE//AD
nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)
Xét ΔBDC có OF//BC
nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)
=>DE=CF
a: OM//CD
=>OM/CD=AO/AC=AM/AD
ON//DC
=>ON/CD=BO/BD=BN/BC
b: OM/CD=ON/CD(AM/AD=BN/BC)
=>OM=ON
c: 2/MN=1/AB+1/CD
=>2/MN=1/4+1/6=3/12+2/12=5/12
=>MN/2=12/5
=>MN=24/5=4,8cm
a, S(ADC)=S(BDC) (vì có chung đáy và có chiều cao bằng nhau)
Mà:S(ADC)=S(AOD)+S(DOC)(1) và S(BDC)=S(BOC)+S(DOC) (2)
Tư (1) và (2) suy ra :S(ADO)=S(BOC)
b,EF//AB nênAE/AD=BF/BC
Tam giác ADC có :OE/DC=AE/AD
Tam giác BDC có :OF/DC=BF/BC
Suy ra :OE/DC=OF/DC=>OE=OF
c,Ta có :ED/AD+AE/AD=1. Mà ED/AD=EO/AB, AE/AD=EO/DC
=>EO/AB+EO/DC=1
=>1/AB+1/DC=1/OE
Mặt khác:EO=OF=1/2EF =>1/OE=2/EF
=>1/AB+1/DC=2/EF
chúc bạn học tốt nhé
mình cần câu d cơ
Còn câu a, b, c thì dễ òi