CMR: 11...1 - 22...2 ( 2n chữ số, n chữ số 2 ) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=444......4\) (\(2n\) chữ số 4) \(=4.1111.....111\) (\(2n\) chữ số 1) \(=4.\dfrac{10^{2n}-1}{9}\)
\(B=222.....22\) (\(n+1\) chữ số 2) \(=2.111....11\) (\(n+1\) chữ số 1) \(=2.\dfrac{10^{n+1}-1}{9}\)
\(C=888....888\) (\(n\) chữ số 8) \(=8.111....1111\) (\(n\) chữ số 1) \(=8.\dfrac{10^n-1}{9}\)
\(\Leftrightarrow A+B+C+7=\dfrac{4,10^{2n}+2.10^{n+1}+8.10^n-14}{9}\)
Ta có A-B=11...1(2n c/s 1)-22....2(n c/s 2)
A-B=11....1(n c/s 1)x10n +11.....1(n /s 1)-2x 11.....1(n c/s 1)
Đặt 11.....1(n c/s 1)=a(a thuộc N)
A-B=a(9a+1)+a-2a
A-B=9a2+a+a-2a
A-B=9a2
A-B=(3a)2.Vì a thuộc N nên 3a thuộc N nên A-B là số chính phương
CMR số sau là số chính phương
A = 11...1(2n chữ số 1) + 11...1(n+1 chữ số 1) + 66...6(n chữ số 6) + 8
A=\(11...1\) (2n chữ số 1)+11...1(n+1 số 1) +66.6 (n số ^) +8
=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot11...1\) (n số 1) +8
=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot\frac{10^n-1}{9}+8\)
=\(\frac{10^{2n}-1+10^n\cdot10-1+6\cdot10^n-6+72}{9}\)
=\(\frac{10^{2n}+16\cdot10^n+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{9}\)
=\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)
Ta thấy: 10n +8 có tổng các chữ số =9
=> 10n+8 chia hết cho 3 => 10n +8 thuộc Z
=>\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)thuộc Z
=> A là số chính phương