Cho hình thang ABCD (BC//AD). Gọi O là giao điểm của hai đường chéo AC và BD. E, F lần lượt là trung điểm của AD và BC. Chứng minh E,O, F thẳng hàng.
GIÚP MÌNH VỚI!!! 😀😀😀
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C/m
có BC//AD(gt)
=>BF//ED;FC//AE(F\(\in\)BC;E\(\in\)AD)
Giả sử E,O,F thẳng hàng với E là trung điểm của AD
Xét \(\Delta\)FOB và \(\Delta\)EOD có
\(\widehat{FOB}=\widehat{EOD}\)(đối đỉnh)(1)
Có BF//ED=>\(\widehat{FBO}=\widehat{EDO}\)(so le trong)(2)
Từ (1) và (2)=>\(\Delta FOB~\Delta EOD\)(g.g)=>\(\frac{BF}{ED}=\frac{FO}{OE}\)(*)
Làm Tương tự với \(\Delta FOC\) và \(\Delta EOA\)=>\(\Delta FOC~\Delta EOA\)=>\(\frac{FC}{AE}=\frac{FO}{OE}\)(**)
=>\(\frac{BF}{ED}=\frac{FC}{AE}\)(@)
mà E là trung điểm của AD =>AE=ED(@@)
Từ (@) và (@@)
=> BF=FC=>F là trung điểm của BC
Vậy F là trung điểm BC, E là trung điểm AD thì E,O,F thẳng hàng (đpcm)
mik làm theo cách này chưa chắc đã đúng đâu nha bạn xem xem đúng không đã nha
a) ABCD là hình thang nên AB//CD
CD=2AB ==>AB/CD=1/2
AB//CD, áp dụng định lý Ta-let, ta có
OA/OC=OB/OD=AB/CD=1/2
=>OA/OC=1/2 => OC=2OA
B) Ta có : OA/OC=OB/OD=AB/CD=1/2
==> OD/OB = 2 ==>OD = 2OB
*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);
OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD
c)
Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB
MI//AB, áp dụng hệ quả của định lý Ta-let, ta có
MI/AB = DM/AD = DI/IB (1)
IN//AB, áp dụng định lý Ta-let, ta có
CN/BC=DI/IB (2)
Từ (1) và (2), ta có
DM/AD=CN/BC
d)
KN//AB, áp dụng hệ quả của định lý Ta-let, ta có
KN/AB=CN/BC
Ta có :KN/AB=CN/BC và MI/AB=DM/AD
mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔOAK và ΔOCH có
\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)
OA=OC
\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)
Do đó: ΔOAK=ΔOCH
=>OK=OH
=>O là trung điểm của KH
Xét ΔOAE và ΔOCF có
\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
Do đó: ΔOAE=ΔOCF
=>OE=OF
=>O là trung điểm của EF
Xét tứ giác EKFH có
O là trung điểm chung của EF và KH
=>EKFH là hình bình hành