Bài 3 : Chứng minh rằng : ab + ba chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
ab+ba chia hết cho 11
=(10a+1b)+(10b+1a) chia hết cho 11
=11ab+11ba chia hết cho 11
tích nhé
vì |a| =a và |b| cũng bằng b mà a = b
suy ra |a| cũng chia hết cho |b|
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
\(=3.\left(4a+12b\right)\)chia hết cho 3 vì có thừa số là 3.
b)\(2n+7=2n+2+5\)
\(=2.\left(n+1\right)+5\)
=>5 chia hết cho n+1.
n+1 thuộc 1;5
n thuộc 0;4.
Chúc em học tốt^^
Bài 1:
12a + 36b = 12.(a + 3b) = 3.4.(a + 3b) chia hết cho 3
=> 12a + 36b luôn chia hết cho 3 (Đpcm)
Bài 2:
2n + 7 chia hết cho n + 1
=> 2n + 2 + 5 chia hết cho n + 1
=> 2(n + 1) + 5 chia hết cho n + 1
Có 2(n + 1 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5)
=> n + 1 thuộc {1; -1; 5; -5}
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Mà n thuộc N
=> n thuộc {0; 4}
\(10^{10}\) không chia hết cho 9; \(10^9\) không chia hết cho 3, bạn xem lại đề
ab+ba=a0+b+b0+a=a.10+a+b.10+b=a.(10+1)+b.(10+1)=a.11+b.11 chia het cho 11