Cho tam giác ABC, gọi M là một điểm nằm bên trong tam giác . các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, CA, AB tại D, E, F. Tìm giá trị nhỏ nhất của biểu thức:
P = \(\sqrt{\dfrac{AM}{MD}}+\sqrt{\dfrac{BM}{ME}}+\sqrt{\dfrac{CM}{MF}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S_{BOC}=x^2,S_{AOC}=y^2,S_{AOB}=z^2\) \(\Rightarrow S_{ABC}=S_{BOC}+S_{AOC}+S_{AOB}=x^2+y^2+z^2\)
Ta có : \(\frac{AD}{OD}=\frac{S_{ABC}}{S_{BOC}}=\frac{AO+OD}{OD}=1+\frac{AO}{OD}=\frac{x^2+y^2+z^2}{x^2}=1+\frac{y^2+z^2}{x^2}\)
\(\Rightarrow\frac{AO}{OD}=\frac{y^2+z^2}{x^2}\Rightarrow\sqrt{\frac{AO}{OD}}=\sqrt{\frac{y^2+z^2}{x^2}}=\frac{\sqrt{y^2+z^2}}{x}\)
Tương tự ta có \(\sqrt{\frac{OB}{OE}}=\sqrt{\frac{x^2+z^2}{y^2}}=\frac{\sqrt{x^2+z^2}}{y};\sqrt{\frac{OC}{OF}}=\sqrt{\frac{x^2+y^2}{z^2}}=\frac{\sqrt{x^2+y^2}}{z}\)
\(\Rightarrow P=\frac{\sqrt{x^2+y^2}}{z}+\frac{\sqrt{y^2+z^2}}{x}+\frac{\sqrt{x^2+z^2}}{y}\ge\frac{x+y}{\sqrt{2}z}+\frac{y+z}{\sqrt{2}x}+\frac{x+z}{\sqrt{2}y}\)
\(=\frac{1}{\sqrt{2}}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\ge\frac{1}{\sqrt{2}}\left(2+2+2\right)=3\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z\Rightarrow S_{BOC}=S_{AOC}=S_{AOB}=\frac{1}{3}S_{ABC}\)
\(\Rightarrow\frac{OD}{OA}=\frac{OE}{OB}=\frac{OF}{OC}=\frac{1}{3}\Rightarrow\)O là trọng tâm của tam giác ABC
Vậy \(MinP=3\sqrt{2}\) khi O là trọng tâm của tam giác ABC
cho tam giác ABC. Các điểm D, E, F lần lượt thuộc AB, AC, BC. chứng minh rằng: a) diện tích ADE trên diện tích ABC bằng AD*AE trên AB*AC . b) Trong 3 tam giác ADE, BDF, CEF tồn tại 1 tam giác có diện tích không vượt quá 1/4 diện tích ABC. Khi nào cả 3 tam giác đó cùng có diện tích = 1/4 diện tích ABC
• Đặt \(S_{MBC}=S_1;S_{MAC}=S_2;S_{MAB}=S_3\)
• Dựng \(AH\perp BC\text{ và }MK\perp BC\)
⇒ AH // MK
\(\Rightarrow\dfrac{AD}{MD}=\dfrac{AH}{MK}=\dfrac{\dfrac{1}{2}\times AH\times BC}{\dfrac{1}{2}\times MK\times BC}=\dfrac{S_{ABC}}{S_1}\)
\(\Rightarrow\dfrac{AM}{MD}=\dfrac{AD}{MD}-1=\dfrac{S_{ABC}}{S_1}-1=\dfrac{S_2+S_3}{S_1}\)
\(\Rightarrow\sqrt{\dfrac{AM}{MD}}=\sqrt{\dfrac{S_2+S_3}{S_1}}\)
• Tương tự, ta cũng có: \(\sqrt{\dfrac{BM}{ME}}=\sqrt{\dfrac{S_1+S_3}{S_2}};\sqrt{\dfrac{CM}{MF}}=\sqrt{\dfrac{S_1+S_2}{S_3}}\)
• Áp dụng bất đẳng thức AM - GM, ta có:
\(P=\sqrt{\dfrac{S_2+S_3}{S_1}}+\sqrt{\dfrac{S_1+S_3}{S_2}}+\sqrt{\dfrac{S_2+S_1}{S_3}}\)
\(\ge3\sqrt[6]{\dfrac{S_2+S_3}{S_1}\times\dfrac{S_1+S_3}{S_2}\times\dfrac{S_2+S_1}{S_3}}\)
\(\ge3\sqrt[6]{\dfrac{2\sqrt{S_2S_3}}{S_1}\times\dfrac{2\sqrt{S_1S_3}}{S_2}\times\dfrac{2\sqrt{S_2S_1}}{S_3}}=3\sqrt{2}\)
• Dấu "=" xảy ra khi \(S_1=S_2=S_3\)
⇔ M là trọng tâm của ΔABC.
cảm ơn cậu nhiều lắm......!!!!