K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

A B C D E M H N

a/ Xét \(\Delta ABM;\Delta ACM\) có :

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AMchung\\MB=MC\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)

\(\Leftrightarrow\widehat{BMA}=\widehat{CMA}\)

\(\widehat{BMA}+\widehat{CMA}=180^0\left(kềbuf\right)\)

\(\Leftrightarrow\widehat{BMA}=\widehat{CMA}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow AM\perp BC\left(đpcm\right)\)

b/ Ta có :

\(\left\{{}\begin{matrix}MB+BD=MD\\MC+CE=ME\end{matrix}\right.\)

\(MB=MC;BD=CE\)

\(\Leftrightarrow MD=ME\)

Xét \(\Delta AMD;\Delta AME\) có :

\(\left\{{}\begin{matrix}MD=ME\\\widehat{AMD}=\widehat{AME}=90^0\\AMchung\end{matrix}\right.\)

\(\Leftrightarrow\Delta AMD=\Delta AME\left(c-g-c\right)\)

\(\Leftrightarrow\widehat{MAD}=\widehat{MAE}\)

Mà AM nằm giữa AD; AE

\(\Leftrightarrow AM\) là tia phân giác của \(\widehat{DAE}\)

a) Xét ΔABDΔABD và ΔACEΔACE có:

AB=ACAB=AC (do ΔABCΔABC cân đỉnh A)

ˆABD=ˆACEABD^=ACE^ (cùng +45o+45o=180^o)

BD=CEBD=CE (giả thiết)

⇒ΔABD=ΔACE⇒ΔABD=ΔACE (c.g.c)

⇒AD=AE⇒AD=AE (hai cạnh tương ứng)

⇒ΔADE⇒ΔADE cân đỉnh A

b) Ta có: BD+BM=CE+CM⇒DM=EMBD+BM=CE+CM⇒DM=EM

Xét ΔAMDΔAMD và ΔAMEΔAME có:

AD=AEAD=AE (cmt)

AMAM chung

DM=EMDM=EM (cmt)

⇒ΔAMD=ΔAME⇒ΔAMD=ΔAME (c.c.c)

⇒ˆMAD=ˆMAE⇒MAD^=MAE^ (hai góc tương ứng)

⇒AM⇒AM là phân giác ˆDAEDAE^ (đpcm)

Ta có ΔAMD=ΔAME⇒ˆAMD=ˆAMEΔAMD=ΔAME⇒AMD^=AME^

Mà ˆAMD+ˆAME=180oAMD^+AME^=180o

⇒ˆAMD=ˆAME=180o2=90o⇒AMD^=AME^=180o2=90o

⇒AM⊥DE⇒AM⊥DE (đpcm)

c) Xét ΔΔ vuông ABHABH và ΔΔ vuông ACKACK có:

AB=ACAB=AC (gt)

ˆBAH=ˆCAKBAH^=CAK^ (do ΔABD=ΔACEΔABD=ΔACE)

⇒ΔABH=ΔACK⇒ΔABH=ΔACK (ch-gn)

⇒BH=CK⇒BH=CK (hai cạnh tương ứng) (đpcm)

CHÚC BẠN HỌC GIỎI NHÉ THEO DÕI CHÉO NHA?

25 tháng 12 2016

.

25 tháng 12 2016

.

10 tháng 12 2016

Hình bạn tự vẽ nhé leuleu

a) Xét ΔABM và ΔACM có:

AB=AC (gt)

AM là cạnh chung

BM=CN (M là trung điểm của BC)

=> ΔABM=ΔACM (c-c-c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)

=> \(\widehat{AMB}+\widehat{AMB}=180^o\)

=> \(\widehat{AMB}=90^o\)

=> AM vuông góc với BC

b) Theo câu a ta có: ΔABM=ΔACMB

=> \(\widehat{ABM}=\widehat{ACM}\)

Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)

Xét ΔABD và ΔACE có:

AB=AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)

BD=CE (gt)

=> ΔABD=ΔACE (c-g-c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

Cũng theo câu a thì ΔABM=ΔACM

=> \(\widehat{BAM}=\widehat{CAM}\)

=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)

=> \(\widehat{DAM}=\widehat{EAM}\)

=> AM là tia phân giác của góc DAE

11 tháng 12 2016

ohook

2 tháng 3 2020

a, xét tam giác AMB và tam giác AMC có : AM chung

BM = CM do M là trung điểm của BC (gt)

AB = AC (gt)

=> tam giác AMB = tam giác AMC (c-c-c)

=> góc AMB = góc AMC (đn)

mà góc AMB + góc AMC = 180 (kb)

=> góc AMB = 90

=> AM _|_ BC (đn)

b, góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc ABC + góc ABD = 180 (kb)

góc ACB + góc ACE = 180 (kb)

=> góc ABD = góc ACE 

xét tam giác ABD và tam giác ACE có : BD = CE (gt)

AB = AC (gt)

=> tam giác ABD = tam giác ACE (c-g-c)

2 tháng 3 2020

còn c với d bạn

12 tháng 12 2016

Ta có hình vẽ sau:

 

 

 

 

D E B M C 1 2 1 2 A

a) Vì AB = AC => ΔABC cân

=> \(\widehat{B_2}=\widehat{C_1}\)

Xét ΔABM và ΔACM có:

AB = AC (gt)

\(\widehat{B_2}=\widehat{C_1}\left(cmt\right)\)

BM = CM (gt)

=> ΔABM = ΔACM(c.g.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)

=> AM \(\perp\) BC(đpcm)

b) Ta có: \(\widehat{B_2}=\widehat{C_1}\)\(\widehat{B_1}+\widehat{B_2}=180^o;\widehat{C_1}+\widehat{C_2}=180^o\)

=> \(\widehat{B_1}=\widehat{C_2}\)

Xét ΔABD và ΔACE có:

AB = AC(gt)

\(\widehat{B_1}=\widehat{C_2}\left(cmt\right)\)

BD = CE (gt)

=> ΔABD = ΔACE(c.g.c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

\(\widehat{BAM}=\widehat{CAM}\) (ΔABM = ΔACM)

=> \(\widehat{BAD}+\widehat{BAM}=\widehat{CAE}+\widehat{CAM}\)

=> AM là tia p/g của \(\widehat{DAE}\) (đpcm)

 

12 tháng 12 2016

phần c,d thỳ sao bn

6 tháng 3 2016

giải tiếp =>góc BAM=góc CAM (2 cạnh tương ứng)                                                                                           =>AM là tia phân giác của góc A

A B C D E M F K

Hình đây mọi người