K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác IAOC có

\(\widehat{IAO}+\widehat{ICO}=90^0+90^0=180^0\)

=>IAOC là tứ giác nội tiếp

=>I,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

IA,IC là tiếp tuyến

Do đó: IA=IC

=>I nằm trên đường trung trực của AC(1)

ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OI là đường trung trực của AC

=>OI\(\perp\)AC

c: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Ta có: OI là đường trung trực của AC

=>OI vuông góc với AC tại trung điểm của AC

mà OI cắt AC tại D

nên OI\(\perp\)AC tại D và D là trung điểm của AC

Xét tứ giác CDOE có

\(\widehat{CDO}=\widehat{CEO}=\widehat{ECD}=90^0\)

=>CDOE là hình chữ nhật

=>CO=DE=R

d: Xét ΔIAC có IA=IC

nên ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

Ta có: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)MB tại C

=>ΔACM vuông tại C

Ta có: \(\widehat{IAC}+\widehat{IMC}=90^0\)(ΔACM vuông tại C)

\(\widehat{ICA}+\widehat{ICM}=\widehat{ACM}=90^0\)

mà \(\widehat{IAC}=\widehat{ICA}\)

nên \(\widehat{IMC}=\widehat{ICM}\)

=>IM=IC

mà IC=IA

nên IM=IA

=>I là trung điểm của MA

=>\(MA=2\cdot IC\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(MC\cdot MB=MA^2\)

=>\(MC\cdot MB=\left(2\cdot IC\right)^2=4\cdot IC^2\)

=>\(IC^2=\dfrac{1}{4}\cdot MC\cdot MB\)

25 tháng 12 2014

trên CD lấy điểm N, kẻ MN vuông góc với CD

=> 2 tam giac vuông MBC=MNC

=> 2tam giác MAD=MND

=> MB=MN=MA = R

vậy CD là tiếp tuyến đường tròn tâm  M

 

14 tháng 5 2021

a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính

\(\Rightarrow\widehat{AMB}=90^0\)

\(\Rightarrow AM\perp MB\)

Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình 

\(\Rightarrow\Delta ANB\)cân tại B

\(\Rightarrow NB=BA\)

\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định

b) Vì BM là đường cao của tam giác ABN cân tại B

=> BM là phân giác góc ABN

=> góc ABM= góc NBM

Xét tam giác ARB và tam giác NRB có:

\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)

\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)

\(\Rightarrow RN\perp BN\)

\(\Rightarrow RN\)là tiếp tuyến của (C)

c) Ta có: A,P,B thuộc (O); AB là đường kính

\(\Rightarrow\widehat{APB}=90^0\)

\(\Rightarrow AP\perp BP\)

\(\Rightarrow RN//AP\)( cùng vuông góc với NB )

Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q

\(\Rightarrow Q\)là trực tâm tam giác NAB

\(\Rightarrow NQ\perp AB\)

=> NQ // AR(  cùng vuông góc với  AB)

Xét tứ giác ARNQ có:

\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành

Mà 2 đường chéo RQ và AN vuông góc với nhau

=> ARNQ là hình thoi