K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2015

Đặt A=2+22+23+...+298+299+2100

=>A=(2+22+23)+...+(298+299+2100)

=>A=2.(1+2+22)+...+298.(1+2+22)

=>A=2.7+...+298.7

=>A=7.(2+...+298)

=>A chia hết cho 7

=>A chia 7 dư 0

25 tháng 7 2018

\(1+2+3+...+98+99+100\)

\(=\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)

\(=\frac{101.100}{2}=5050\)

Mà 5050 chia 9 dư 1

25 tháng 7

cho s=1+2+2^2+2^3+...+2^100 tìm x biết s+1=2^x~7

2 tháng 11 2015

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7

2 + (2\(^2\)+2\(^3\)+2\(^4\)) +..+ (2\(^{98}\)+2\(^{99}\)+2\(^{100}\))
 2 + 7.2\(^2\) +..+ 7.2\(^{98}\) => A chia 7 dư 2

10 tháng 12 2023

.............

9 tháng 11 2014

A=1+(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+......+(2^97+2^98+2^99+2^100)

  =1+ 30+2^5.(2+2^2+2^3+2^4)+.......+2^97.(2+2^2+2^3+2^4)

  =1+30+2^5.30+.....+2^97.30 không chia hết cho 30 ( bạn viết kí hiệu ko chia hết nha)

  => A : 30 dư 1

24 tháng 12 2020
M= 1+3+3^2+3^3+...+3^98+3^99+3^100 M= (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100) M= (1+3+3^2)+3^3(1+3+3^2)+...+3^98(1+3+3^2) M= 13+3^3.13+...+3^98.13 M=13.(3^3+...+3^98) chia hết cho 13 => M chia cho 13 dư 0
19 tháng 12 2021

sai rồi bjan

22 tháng 10 2021

S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)

\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)

Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)

Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20

\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4

\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1

6 tháng 8 2019

gọi tích là s ta có

S = 1- 3 + 3^2 - 3^3 + 3^4 - ... + 3^98 - 3^99

3S=3-3^2+3^3-3^4+......3^99-3^100

==> 3S-S=2S=1-3^100

S=\(\frac{1-3\text{^}100}{2}\)