cho tam giac vuong ABC( góc C=90 đô ) nôi tiep trong đường tròn tâm O. tren cung nho AC lấy môt điem M bất kỳ (M khác A và C ). ve đường tròn tâm A bán kính AC, đường tròn này cắt (O) tai điem D(D khác C ). đoan thẳng BM cắt đường tròn tâm A tai điem N.a chứng minh: MB là tia phân giác của góc CMD.b) chứng minh BC là tiep tuyen của đường tròn tâm A nói trên .c) so sánh góc CNM và góc MDN.d) cho biet MC=a,MD=b. hay tính đoan thẳng MN theo a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu này khá dễ bạn ạ
Tứ giác ABDF nội tiếp vì có BAF+FDB=180 (mà 2 góc đối nhau)
Tứ giác ADCE nội tiếp vì CAE=EDC=90(mà 2 góc cùng nhìn cạnh EC)
ABC=AFE (cùng phụ với BED)
AM là tiếp tuyến nên MAO=90
mà BAC=90 nên BAO=FAM(cùng phụ với OAC)
mặt khác AB=OA=OB=R(gt)
nên tam giác OAB đều mà ABO=MFA,MÀ=BAO nên tam giác AMF đều
1: Ta có \(\widehat{CDE}=\widehat{CNE}=90^o\) nên tứ giác CDNE nội tiếp đường tròn đường kính CE.
2: Xét tam giác \(BKD\) và tam giác \(EKM\) có: \(\widehat{BKD}=\widehat{EKM}\) (đối đỉnh), \(\widehat{BDK}=\widehat{EMK}\) (= \(90^o\))
Do đó \(\Delta BKD\sim\Delta EKM(g.g)\).
Suy ra \(\dfrac{KB}{KD}=\dfrac{KE}{KM}\Rightarrow KB.KM=KE.KD\).
Do K là trực tâm của tam giác BCE nên C, K, N thẳng hàng.
3: Ta có \(\widehat{FNK}=\dfrac{1}{2}sđ\stackrel\frown{NC}=\widehat{NBC}=90^o-\widehat{BED}=\widehat{NKF}\). Suy ra tam giác NKF cân tại F nên FN = FK. Lại có tam giác ENK vuông tại N nên F là trung điểm của EK.
Vậy ta có đpcm.
b: Xét (O) có
CA là tiếp tuyến
CM là tiếp tuyến
Do đó: CA=CM
Xét (O) có
DB là tiếp tuyến
DM là tiếp tuyến
Do đó: DB=DM
Ta có: CM+DM=CD
nên CD=AC+BD