K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì tứ giác \(ABCD\) là hình thang có \(AB//CD\) nên \(\widehat {BAO} = \widehat {OCD}\) (hai góc so le trong)

Xét tam giác \(ABO\) và tam giác \(CDO\) có:

\(\widehat {BAO} = \widehat {OCD}\) (chứng minh trên)

\(\widehat {AOB} = \widehat {COD}\) (hai góc đối đỉnh)

Do đó, \(\Delta ABO\backsim\Delta CDO\) (g.g)

Ta có: \(\frac{{AB}}{{CD}} = \frac{{OB}}{{OD}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{6}{{15}} = \frac{{OB}}{8} \Rightarrow OB = \frac{{6.8}}{{15}} = 3,2\)

Vậy \(OB = 3,2m\).

21 tháng 8 2023

tham khảo:

Bài tập 1 trang 64 Toán 11 tập 2 Chân trời

a) Vì SA⊥(ABCD) nên SA⊥CD

Ta có: DC⊥AD;DC⊥SA nên DC⊥(SAD)

b) Vì SA⊥(ABCD) nên SA⊥CM

Ta có: AB = 2CD nên AM = CD. Suy ra AMCD là hình chữ nhật nên CM⊥AB

Mà CM⊥SA

Suy ra: CM⊥(SAB)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Xét tam giác \(OCD\) có \(AB//CD\) (giả thiết) và \(AB\) cắt \(OC;OD\) lần lượt tại \(A;B\).

Theo hệ quả của định lí Thales ta có:

\(\frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} = \frac{{AB}}{{CD}} \Rightarrow \frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} \Rightarrow OA.OD = OB.OC\)  (điều phải chứng minh).

13 tháng 9 2023

Xét tam giác \(OCD\) có \(AB//CD\) (giả thiết) và \(AB\) cắt \(OC;OD\) lần lượt tại \(A;B\).

Theo hệ quả của định lí Thales ta có:

\(\frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} = \frac{{AB}}{{CD}} \Rightarrow \frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} \Rightarrow OA.OD = OB.OC\)  (điều phải chứng minh).

21 tháng 8 2023

tham khảo:

Thực hành 3 trang 62 Toán 11 tập 2 Chân trời

a) Tam giác SAB có MN là đường trung bình nên MN//SA

Mà SA⊥(ABCD) nên MN⊥(ABCD). Suy ra MN⊥AB

Hình thang ABCD có NP là đường trung bình nên NP//BC//AD. Mà BC⊥AB nên NP⊥AB

Ta có AB vuông góc với hai đường thẳng MN và NP cắt nhau cùng thuộc (MNPQ) nên AB⊥(MNPQ)

b) Vì AB⊥(MNPQ);MQ∈(MNPQ) nên AB⊥MQ

Tam giác SBC có MQ là đường trung bình nên MQ//BC. Mà SA⊥BC nên SA⊥MQ

Ta có MQ vuông góc với hai đường thẳng SA và AB cắt nhau cùng thuộc (SAB) nên MQ⊥(SAB)

26 tháng 6 2019

A B C D I K M N

Hướng dẫn: 

Lấy N, M lần lượt là trung điểm của AD, BC 

Sử dụng tính chất đường trung bình.

Em chứng minh N, I, K, M thẳng hàng (  Chứng minh: NI, NK, NM cùng song song với DC, AB)

IK=NM-NI-MK

NM=(AB+DC)/2    , NI=AB/2,   MK=AB/2

=>IK= thay vào rồi tính = kết quả trên đề bài

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Đường thẳng song song với \(AB\) cắt  và \(BC\) theo thứ tự tại các điểm \(M,N,P,Q\) nên

\(PM//AB//CD;MN//AB//CD;NQ//AB//CD\).

- Xét tam giác \(BCD\) có \(QN//CD\) và \(QN\) cắt \(BD;BC\) lần lượt tại \(N;Q\).

Theo hệ quả của định lí Thales ta có:

\(\frac{{QN}}{{DC}} = \frac{{NB}}{{BD}} = \frac{{BQ}}{{BC}} \Rightarrow \frac{{QN}}{{DC}} = \frac{{NB}}{{BD}}\)  (1)

- Xét tam giác \(ACD\) có \(PM//CD\) và \(PM\) cắt \(AD;AC\) lần lượt tại \(M;P\).

Theo hệ quả của định lí Thales ta có:

\(\frac{{PM}}{{DC}} = \frac{{PA}}{{AC}} = \frac{{AM}}{{AD}} \Rightarrow \frac{{PM}}{{DC}} = \frac{{AM}}{{AD}}\)  (2)

- Xét tam giác \(DMN\) có \(AB//MN\). Theo định lí Thales ta có:

\(\frac{{AM}}{{AD}} = \frac{{NB}}{{BD}}\)  (3)

Từ (1), (2), (3) ta có:

\(\frac{{AM}}{{AD}} = \frac{{NB}}{{BD}} = \frac{{QN}}{{DC}} = \frac{{PM}}{{DC}} \Rightarrow \frac{{QN}}{{DC}} = \frac{{PM}}{{DC}} \Rightarrow QN = PM\)

Ta có:

\(QN + MQ = PM + MQ \Rightarrow MN = PQ\) (đpcm).

8 tháng 8 2015

a) tam giác abd có

am=md;bn=nd

=>mn là đường trung bình của tam giác abd

=>mn//ab(1)

tương tự vói tam giác bcd ta có

nq//cd(2)

mà ab//cd(3)

từ (1);(2) và (3) suy ra m;n;q thẳng hàng(*)

tam giác abc có

ap=pc;bq=cq

=>pq là đường trung bình của tam giác abc

=>pq/ab(4)

từ (1);(2) và (4) suy ra m;p;q thẳng hàng(**)

từ (*) và (**) suy ra m;n;p;q thảng hàng

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Qua \(M\) dựng đường thẳng song song với \(BC\), cắt \(AB\) tại \(N\).

Qua \(N\) dựng đường thẳng song song với \(SA\), cắt \(SB\) tại \(P\).

Qua \(P\) dựng đường thẳng song song với \(BC\), cắt \(SC\) tại \(Q\).

Vì \(MN\parallel BC,NP\parallel SA\) nên \(\left( {MNPQ} \right) \equiv \left( P \right)\).

Ta có:

\(\begin{array}{l}MN = \left( P \right) \cap \left( {ABC{\rm{D}}} \right)\\NP = \left( P \right) \cap \left( {SAB} \right)\\PQ = \left( P \right) \cap \left( {SBC} \right)\\MQ = \left( P \right) \cap \left( {SC{\rm{D}}} \right)\end{array}\)

Gọi \(E\) là giao điểm của \(A{\rm{D}}\) và \(MN\), \(F\) là giao điểm của \(S{\rm{D}}\) và \(MQ\). Ta có:

\(\begin{array}{l}\left. \begin{array}{l}E \in A{\rm{D}} \subset \left( {SA{\rm{D}}} \right)\\E \in MN \subset \left( P \right)\end{array} \right\} \Rightarrow E \in \left( P \right) \cap \left( {SA{\rm{D}}} \right)\\\left. \begin{array}{l}F \in S{\rm{D}} \subset \left( {SA{\rm{D}}} \right)\\F \in MQ \subset \left( P \right)\end{array} \right\} \Rightarrow F \in \left( P \right) \cap \left( {SA{\rm{D}}} \right)\\ \Rightarrow EF = \left( P \right) \cap \left( {SA{\rm{D}}} \right)\end{array}\)