Cho phương trình ẩn x (2m-1)x-25+m=0
a. Tìm giá trị của m để pt là pt bậc nhất
b. Giải phương trình m=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để phương trình là phươg trình bậc nhất một ẩn thì m-2<>0
hay m<>2
b: Ta có: 3x+7=2(x-1)+8
=>3x+7=2x-2+8
=>3x+7=2x+6
=>x=-1
Thay x=-1 vào (1), ta được:
-2(m-2)+3=3m-13
=>-2m+4+3=3m-13
=>-2m+7=3m-13
=>-5m=-20
hay m=4(nhận)
a) PT trên là PT bậc nhất \(\Leftrightarrow m-2 \ne 0 \Leftrightarrow m \ne 2\)
b) \(m=5 \Rightarrow 3x+3=0 \Leftrightarrow x=-1\)
Vậy \(x=-1\) khi \(m=5\).
\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)
Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
a: Để đây là phương trình bậc nhất thì 2m-1<>0
hay m<>1/2
b: Khi m=-1 thì pt sẽ là \(\left(-2-1\right)x-25+\left(-1\right)=0\)
=>-3x-26=0
hay x=-26/3
pt ẩn x : \(\left(2m-1\right)x-25+m=0\)
a) Để pt là pt bậc nhất khi \(2m-1\ne0\Rightarrow m\ne\dfrac{1}{2}\)
Vậy \(m\ne\dfrac{1}{2}\) thì pt là pt bậc nhất.
b) Khi m = -1 ta có : \(\left(2\cdot\left(-1\right)-1\right)\cdot x-25+\left(-1\right)=0\)
\(\Leftrightarrow-3x-26=0\)
\(\Rightarrow x=-\dfrac{26}{3}\)
Vậy khi m = -1 thì x = \(-\dfrac{26}{3}\).
Lời giải:
Để PT là PT bậc nhất 1 ẩn thì:
$m^2-m+1\neq 0$
$\Leftrightarrow (m-\frac{1}{2})^2+\frac{3}{4}>0$
Điều này luôn đúng với mọi $m\in\mathbb{R}$ do $(m-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}>0$ với mọi $m\in\mathbb{R}$
Vậy có vô số số thực $m$ thỏa mãn điều kiện đề.
a: Để đây là pt bậc nhất thì 2m-1<>0
hay m<>1/2
b: Khi m=-1 thì -3x-25-1=0
=>x=-26/3