K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

A B C H M F E N K

a) Xét \(\Delta AMN,\Delta CMB\) có:

\(AM=MC\) (M là trung điểm của AC)

\(\widehat{AMN}=\widehat{CMB}\) (đối đỉnh)

\(NM=MB\left(gt\right)\)

=> \(\Delta AMN=\Delta CMB\left(c.g.c\right)\)

b) Xét \(\Delta EBC,\Delta FNA\) có :

\(AN=BC\) [từ \(\Delta AMN=\Delta CMB\left(cmt\right)\)]

\(\widehat{EBC}=\widehat{FNA}\) [\(\Delta AMN=\Delta CMB\left(cmt\right)\))

\(BE=NF\left(gt\right)\)

=> \(\Delta EBC=\Delta FNA\left(c.g.c\right)\)

=> \(AF=CE\) (2 cạnh tương ứng)

c) Xét \(\Delta MBH,\Delta MNK\) có :

\(\widehat{BMK}=\widehat{NMK}\) (đối đỉnh)

\(BM=MN\left(gt\right)\)

\(\widehat{MBH}=\widehat{MNK}\) [từ \(\Delta AMN=\Delta CMB\left(cmt\right)\)]

=> \(\Delta MBH=\Delta MNK\left(g.c.g\right)\)

=> KM= HM (2 cạnh tương ứng)

Xét \(\Delta AMK,\Delta CMH\) có :

\(AM=MC\) (M là trung điểm của BC)

\(\widehat{AMK}=\widehat{CMH}\) (đối đỉnh)

\(KM=HM\left(cmt\right)\)

=> \(\Delta AMK=\Delta CMH\left(c.g.c\right)\)

=> \(\widehat{AKM}=\widehat{CHM}=90^{^o}\) (2 góc tương ứng)

Vậy \(\widehat{AKM}=90^o\)

12 tháng 11 2015

A B C M N E F K H

a) Xét tam giác AMN và CMB có: MB = MN ; góc BMC = NMA; MC = MA 

=> tam giác AMN = tam giác CNB ( c - g - c)

b) Ta có ME = MB - BE; MF = MN - NF

Mà  MB = MN; BE = NF (gt)

Nên ME = MF

Xét tam giác MAF và MCE có: MA = MC; góc AMF = CME; MF = ME

=> tam giác MAF = tam giác MCE ( c - g - c)

=> AF = CE ( 2 cạnh tương ứng)

c) Ta có góc NAM = MCB ( tam giác AMN = CMB)

Mà hai góc này ở vị trí So le trong nên AN // BC 

ta có MH | BC nên MH | AN tại Km => góc AKM = 90o

12 tháng 11 2015

chả có hình khó làm lắm

29 tháng 11 2015

a)2 tam giác bằng nhau theo TH c-g-c

b)cm tam giác MEC=tam giác MFA(c-g-c)

=>EC=FA(2 cạnh tương ứng)

 

15 tháng 8 2016

A B C M N E F

15 tháng 8 2016

bài giải nữa nha bạn

23 tháng 12 2020

a) Xét ΔAME và ΔCMB có 

AM=CM(M là trung điểm của AC)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

ME=MB(gt)

Do đó: ΔAME=ΔCMB(c-g-c)

⇒AE=BC(hai cạnh tương ứng)

b) Ta có: ΔAME=ΔCMB(cmt)

nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)

mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong

nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔANF và ΔBNC có 

AN=BN(N là trung điểm của AB)

\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)

NF=NC(gt)

Do đó: ΔANF=ΔBNC(c-g-c)

⇒AF=BC(hai cạnh tương ứng)

Ta có: ΔANF=ΔBNC(cmt)

nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)

mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong

nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

mà AE//BC(cmt)

và AF,AE có điểm chung là A

nên F,A,E thẳng hàng(1)

Ta có: AE=BC(cmt)

mà AF=BC(cmt)

nên AE=AF(2)

Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)

24 tháng 12 2017

c, Xét \(\Delta AME\)và \(\Delta CMB\)có:

AM=CM(M là trung điểm của AC)

\(\widehat{AME}=\widehat{CMB}\)(2góc đối đỉnh)

ME=MB(gt)

\(\Rightarrow\)\(\Delta AME=\Delta CMB\)(c-g-c)

\(\Rightarrow\)AE=BC(2 cạnh tương ứng)(dpcm)

Do\(\Delta AME=\Delta CMB\)(c-g-c)

\(\Rightarrow\)\(\widehat{AEM}=\widehat{CBM}\)(2 góc tương ứng)

Mà 2 góc ở vị trí so le trong suy ra AE song song BC(dpcm)

a,Xét \(\Delta AMB\)\(\Delta CME\)

AM=CM(M là tđ của AC)

\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)

MB=ME(gt)

\(\Rightarrow\) \(\Delta AMB\)=\(\Delta CME\)(c-g-c)

\(\Rightarrow\)AB=CE(dpcm)

b, câu b tương tự câu a nhé

d, bạn chứng minh \(\Delta ANF=\Delta BNC\)(c-g-c)

\(\Rightarrow\)AF=BC (1)

lại có AE=BC(theo c) (2)

Từ (1), (2) \(\Rightarrow\)AE=AF

\(\Rightarrow\)A là trung điểm của EF(dpcm)

27 tháng 2 2020

b1 : 

A B C I

tự cm tam giác ABC vuông

=> góc ABC + góc ACB = 90 (đl)

BI là pg của góc ABC => góc IBC = góc ABC : 2

CI là pg của góc ACB => góc ICB = góc ACB : 2

=> góc IBC + góc ICB = (góc ABC + góc ACB)  : 2

=> góc IBC + góc ICB = 45

xét tam giác IBC => góc IBC + góc ICB + góc BIC = 180

=> góc BIC = 135