K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

b: Xét ΔACB có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Bài 2: 

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

b: Xét ΔABC có

M là trung điểm của AB

MN//AC

Do đó: N là trung điểm của BC

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: \(MN=\dfrac{AC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Bài 1: 

a:  Xét ΔABC có 

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Bài 2: 

a: Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

b: Xét ΔABC có 

MN//AC

nên \(\dfrac{MN}{AC}=\dfrac{BM}{AB}\)

hay MN=6(cm)

Bài 8:

1: Xét ΔABC có

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

2: Sửa đề: EF=1/2BC

Xét ΔACB có

E,F lần lượt là trung điểm của AB,AC

=>EF là đường trung bình của ΔACB

=>\(EF=\dfrac{1}{2}CB\)

3: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là phân giác của góc EAF

Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

Hình bình hành AEMF có AM là phân giác của góc EAF

nên AEMF là hình thoi

=>AE=MF=FM=AF

Bài 6: Cho tam giác ABC lấy điểm I thuộc cạnh AB sao cho IA=IB.Qua I kẻ đường thẳng song song với BC cắt AC tại K1) Chứng minh K là trung điểm AC2) Chứng minh K là đường trung bình của tam giác ABCBài 7: Cho tam giác ABC có độ dài BC=a và M là trung điểm của AB và AC.1) Chứng minh N là trung điểm AC 2) Tính độ dài đoạn thẳng MN theo aBài 8: Cho tam giác ABC cân tại A có M là trung điểm BC. Kẻ Mx//AC cắt AB tại E; kẻ My//AB...
Đọc tiếp


Bài 6: Cho tam giác ABC lấy điểm I thuộc cạnh AB sao cho IA=IB.Qua I kẻ đường thẳng song song với BC cắt AC tại K
1) Chứng minh K là trung điểm AC
2) Chứng minh K là đường trung bình của tam giác ABC
Bài 7: Cho tam giác ABC có độ dài BC=a và M là trung điểm của AB và AC.
1) Chứng minh N là trung điểm AC 
2) Tính độ dài đoạn thẳng MN theo a
Bài 8: Cho tam giác ABC cân tại A có M là trung điểm BC. Kẻ Mx//AC cắt AB tại E; kẻ My//AB cắt AC tại F.Chứng minh:
1)E;F là trung điểm của AB và AC  2) AF=1/2BC       3) ME=MF=AE=AF
Bài 9: Cho tam giác ABC có AH là đường cao.Lấy E và K lần lượt là trung điểm của AB và AC.
1) Chứng minh EK là đường trung bình của tam giác ABC 
2) Đường thẳng EK căt AH tại I. Chứng minh I là trung điểm của AH
3) Biết BC=10cm. Tính EK
Bài 10: Cho hình thang ABCD (AB//CD).Qua trung điểm M của AD vẽ đường thẳng song song với AB cắt AC tại N và BC tại K
1) Chứng minh : N là trung điểm của AC và K là trung điểm của BC
2) Cho AB=1/2DC và DC=20cm. Tính độ dài AB;MN;NK;MK

 


 

1

Bài 9:

1: Xét ΔABC có

E,K lần lượt là trung điểm của AB,AC

=>EK là đường trung bình của ΔABC

2: Vì EK là đường trung bình của ΔABC

nên EK//BC và \(EK=\dfrac{1}{2}BC\)

=>EI//BH

Xét ΔABH có

E là trung điểm của AB

EI//BH

Do đó: I là trung điểm của AH

3: \(EK=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)

bài 10:

1: Xét ΔADC có

M là trung điểm của AD

MN//DC

Do đó: N là trung điểm của AC

Xét hình thang ABCD có

M là trung điểm của AD

MK//AB//CD

Do đó: K là trung điểm của BC

2: \(AB=\dfrac{1}{2}DC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)

Xét ΔADC có

M,N lần lượt là trung điểm của AD,AC

=>MN là đường trung bình của ΔADC

=>\(MN=\dfrac{DC}{2}=10\left(cm\right)\)

Xét ΔCAB có

N,K lần lượt là trung điểm của CA,CB

=>NK là đường trung bình của ΔCAB

=>\(NK=\dfrac{1}{2}AB=5\left(cm\right)\)

MK=MN+NK

=10+5

=15(cm)

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

6 tháng 1 2018

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật

8 tháng 4 2020

a) Xét ΔCBM và ΔADM có:

AM=MC (giả thtết)

gócCMB=gócAMD ( đối đỉnh)

BM=MD (giả thiết)

⇒ ΔCBM=ΔADM (c.g.c)

BC=DA (hai cạnh tương ứng)

b) Xét ΔABM và ΔCDM có:

AM=CM (giả thiết)

gócAMB=gócCMD(đối đỉnh)

BM=DM (giả thiết)     

⇒ ΔABM=ΔCDM (c.g.c)

gócBAM=gócDCM=90độ (hai góc tương ứng) (đpcm)

⇒ DC⊥AC (đpcm)

c) Ta có BN//AC mà AC⊥DC

⇒ BN⊥DC ⇒gócBND=90độ

AB//CD (do cùng ⊥AC)

Xét ΔABC và ΔNBC có:

gócABC=gócNCB (hai góc ở vị trí so le trong)

BC chung

gócACB=gócNBC (do BN//AC nên đó là hai góc ở vị trí so le trong)

⇒ ΔABC=ΔNBC (g.c.g)

⇒ AB=NC (hai cạnh tương ứng)

Xét ΔABM và ΔCNM có:

AB=CN (cmt)

góc BAM=gócNCM=90độ

góc BAM= gócNCM=90độ

AM=CM (giả thiết)

⇒ ΔABM=ΔCNM (đpcm)

8 tháng 4 2020

cảm ơn bạn mai thị hạnh duyên

25 tháng 8 2020

\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)

\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)

Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)

26 tháng 8 2020

(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.

=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2                                                                                                                                                                                   =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2                                                                                                                                                                                         2                          2                                                                                                                                                       Tương Tự:(1-c+c2) (1-d+d2> 1+c2d2                                                                                                                                                                                                                                                         2