Cho A = \(\dfrac{1}{199}+\dfrac{2}{198}+\dfrac{3}{197}+...+\dfrac{198}{2}+\dfrac{199}{1}\)
1/ Có nhận xét gì về tử và mẫu trong tổng trên?
2/ Chứng minh A = 200\(\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{200}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{199}+\dfrac{2}{198}+...+\dfrac{198}{2}+\dfrac{199}{1}\)
\(=\left(\dfrac{1}{199}+1\right)+\left(\dfrac{2}{198}+1\right)+...+\left(\dfrac{198}{2}+1\right)\left(\dfrac{199}{1}+1\right)-199\)\(=\dfrac{200}{199}+\dfrac{200}{199}+...+\dfrac{200}{2}+200-199\)
\(=\dfrac{200}{199}+\dfrac{200}{198}+...+\dfrac{200}{2}+\dfrac{200}{200}\)
\(=200\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{200}\right)\)
\(=200.A\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{1}{200}\)
Ta có:\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Lại có:
\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{100}{101}\)
Vậy ...
Những dãy trên đều có 100 số hạng.
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)
Ta có: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{199\cdot200}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\dfrac{1}{2}-\dfrac{1}{200}\)
\(=\dfrac{100-1}{200}=\dfrac{99}{200}< \dfrac{100}{200}=\dfrac{1}{2}\)(đpcm)
Ta có: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{199\cdot200}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\cdot\cdot\cdot+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\dfrac{1}{2}-\dfrac{1}{200}< \dfrac{1}{2}\) (Đpcm)
Ta có:\(C=\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}.\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{199}{200}.\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{1}{201}\) (đpcm)
Câu a :
Áp dụng BĐT \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\left(a\ne b;a,b>0\right)\) ta có :
\(\dfrac{1}{\sqrt{1.1998}}>\dfrac{2}{1+1998}=\dfrac{2}{1999}\)
\(\dfrac{1}{\sqrt{2.1997}}>\dfrac{2}{2+1997}=\dfrac{2}{19999}\)
.......................................................
\(\dfrac{1}{\sqrt{1998.1}}>\dfrac{2}{1998+1}=\dfrac{2}{1999}\)
Cộng tất cả vế với nhau ta được : \(P>2.\dfrac{1998}{1999}\)
\(\Rightarrowđpcm\)
Câu a, b sao tính chất cái cuối khác những cái còn lại thế. Vậy sao biết tới đâu thì nó dừng.
a, tổng các tử và mẫu mỗi phân sô trên đều bằng 200
b, \(A=\dfrac{1}{199}+\dfrac{2}{198}+\dfrac{3}{197}+...+\dfrac{198}{2}+\dfrac{199}{1}\)
\(A=\dfrac{200}{199}+\dfrac{200}{198}+...+\dfrac{200}{2}+\dfrac{200}{200}\)
\(A=200\left(\dfrac{1}{199}+\dfrac{1}{198}+...+\dfrac{1}{2}+\dfrac{1}{200}\right)\)(đpcm)